We present an introduction to the Darboux integrability theory of planar complex and real polynomial differential systems containing some improvements to the classical theory.
In this paper, we study a new class of quadratic systems and classify all its phase portraits. More precisely, we characterize the class of all quadratic polynomial differential systems in the plane having a complex e...In this paper, we study a new class of quadratic systems and classify all its phase portraits. More precisely, we characterize the class of all quadratic polynomial differential systems in the plane having a complex ellipse x^2 + y^2 + 1 = 0 as invariant algebraic curve. We provide all the different topological phase portraits that this class exhibits in the Poincare disc.展开更多
In this article,the authors consider a class of Kukles planar polynomial differential system of degree three having an invariant parabola.For this class of second-order differential systems,it is shown that for certai...In this article,the authors consider a class of Kukles planar polynomial differential system of degree three having an invariant parabola.For this class of second-order differential systems,it is shown that for certain values of the parameters the invariant parabola coexists with a center.For other values it can coexist with one,two or three small amplitude limit cycles which are constructed by Hopf bifurcation.This result gives an answer for the question given in[4],about the existence of limit cycles for such class of system.展开更多
For cubic differential systems with two homogeneous invariant straight lines and one invariant conic, it is proved that a singular point with pure imaginary eigenvalues (a weak focus) is a centre if and only if the fi...For cubic differential systems with two homogeneous invariant straight lines and one invariant conic, it is proved that a singular point with pure imaginary eigenvalues (a weak focus) is a centre if and only if the first two Lyapunov quantities Lj , j = 1, 2 vanish.展开更多
This paper generalizes the method of Ng6 and Winkler (2010, 2011) for finding rational general solutions of a first order non-autonomous algebraic ordinary differential equation (AODE) to the case of a higher orde...This paper generalizes the method of Ng6 and Winkler (2010, 2011) for finding rational general solutions of a first order non-autonomous algebraic ordinary differential equation (AODE) to the case of a higher order AODE, provided a proper parametrization of its solution hypersurface. The authors reduce the problem of finding the rational general solution of a higher order AODE to finding the rational general solution of an associated system. The rational general solutions of the original AODE and its associated system are in computable 1-1 correspondence. The authors give necessary and sufficient conditions for the associated system to have a rational solution based on proper reparametrization of invariant algebraic space curves. The authors also relate invariant space curves to first integrals and characterize rationally solvable systems by rational first integrals.展开更多
文摘We present an introduction to the Darboux integrability theory of planar complex and real polynomial differential systems containing some improvements to the classical theory.
基金partially supported by a MINECO/FEDER grant MTM2013-40998-Pan AGAUR grant number 2014 SGR568+2 种基金the grants FP7-PEOPLE-2012-IRSES 318999 and 316338the MINECO/FEDER grant UNAB13-4E-1604partially supported by FCT/Portugal through UID/MAT/04459/2013
文摘In this paper, we study a new class of quadratic systems and classify all its phase portraits. More precisely, we characterize the class of all quadratic polynomial differential systems in the plane having a complex ellipse x^2 + y^2 + 1 = 0 as invariant algebraic curve. We provide all the different topological phase portraits that this class exhibits in the Poincare disc.
基金NNSF of China(10671211)NSF of Hunan Province(07JJ3005)USM(120628 and 120627)
文摘In this article,the authors consider a class of Kukles planar polynomial differential system of degree three having an invariant parabola.For this class of second-order differential systems,it is shown that for certain values of the parameters the invariant parabola coexists with a center.For other values it can coexist with one,two or three small amplitude limit cycles which are constructed by Hopf bifurcation.This result gives an answer for the question given in[4],about the existence of limit cycles for such class of system.
文摘For cubic differential systems with two homogeneous invariant straight lines and one invariant conic, it is proved that a singular point with pure imaginary eigenvalues (a weak focus) is a centre if and only if the first two Lyapunov quantities Lj , j = 1, 2 vanish.
基金supported by the Austrian Science Foundation(FWF) via the Doctoral Program "Computational Mathematics" under Grant No.W1214Project DK11,the Project DIFFOP under Grant No.P20336-N18+2 种基金the SKLSDE Open Fund SKLSDE-2011KF-02the National Natural Science Foundation of China under Grant No.61173032the Natural Science Foundation of Beijing under Grant No.1102026,and the China Scholarship Council
文摘This paper generalizes the method of Ng6 and Winkler (2010, 2011) for finding rational general solutions of a first order non-autonomous algebraic ordinary differential equation (AODE) to the case of a higher order AODE, provided a proper parametrization of its solution hypersurface. The authors reduce the problem of finding the rational general solution of a higher order AODE to finding the rational general solution of an associated system. The rational general solutions of the original AODE and its associated system are in computable 1-1 correspondence. The authors give necessary and sufficient conditions for the associated system to have a rational solution based on proper reparametrization of invariant algebraic space curves. The authors also relate invariant space curves to first integrals and characterize rationally solvable systems by rational first integrals.