The presence of invasive plant species poses a substantial ecological impact,thus comprehensive evaluation of their potential range and risk under the influence of climate change is necessary.This study uses maximum e...The presence of invasive plant species poses a substantial ecological impact,thus comprehensive evaluation of their potential range and risk under the influence of climate change is necessary.This study uses maximum entropy(MaxEnt)modeling to forecast the likelihood of Leucaena leucocephala(Lam.)de Wit invasion in Saudi Arabia under present and future climate change scenarios.Utilizing the MaxEnt modeling,we integrated climatic and soil data to predict habitat suitability for the invasive species.We conducted a detailed analysis of the distribution patterns of the species,using climate variables and ecological factors.We focused on the important influence of temperature seasonality,temperature annual range,and precipitation seasonality.The distribution modeling used robust measures of area under the curve(AUC)and receiver-operator characteristic(ROC)curves,to map the invasion extent,which has a high level of accuracy in identifying appropriate habitats.The complex interaction that influenced the invasion of L.leucocephala was highlighted by the environmental parameters using Jackknife test.Presently,the actual geographic area where L.leucocephala was found in Saudi Arabia was considerably smaller than the theoretical maximum range,suggesting that it had the capacity to expand further.The MaxEnt model exhibited excellent prediction accuracy and produced reliable results based on the data from the ROC curve.Precipitation and temperature were the primary factors influencing the potential distribution of L.leucocephala.Currently,an estimated area of 216,342 km^(2)in Saudi Arabia was at a high probability of invasion by L.leucocephala.We investigated the potential for increased invasion hazards in the future due to climate change scenarios(Shared Socioeconomic Pathways(SSPs)245 and 585).The analysis of key climatic variables,including temperature seasonality and annual range,along with soil properties such as clay composition and nitrogen content,unveiled their substantial influence on the distribution dynamic of L.leucocephala.Our findings indicated a significant expansion of high risk zones.High-risk zones for L.leucocephala invasion in the current climate conditions had notable expansions projected under future climate scenarios,particularly evident in southern Makkah,Al Bahah,Madina,and Asir areas.The results,backed by thorough spatial studies,emphasize the need to reduce the possible ecological impacts of climate change on the spread of L.leucocephala.Moreover,the study provides valuable strategic insights for the management of invasion,highlighting the intricate relationship between climate change,habitat appropriateness,and the risks associated with invasive species.Proactive techniques are suggested to avoid and manage the spread of L.leucocephala,considering its high potential for future spread.This study enhances the overall comprehension of the dynamics of invasive species by combining modeling techniques with ecological knowledge.It also provides valuable information for decision-making to implement efficient conservation and management strategies in response to changing environmental conditions.展开更多
To develop a robot system for minimally invasive surgery is significant,however the existing minimally invasive surgery robots are not applicable in practical operations,due to their limited functioning and weaker per...To develop a robot system for minimally invasive surgery is significant,however the existing minimally invasive surgery robots are not applicable in practical operations,due to their limited functioning and weaker perception.A novel wire feeder is proposed for minimally invasive vascular interventional surgery.It is used for assisting surgeons in delivering a guide wire,balloon and stenting into a specific lesion location.By contrasting those existing wire feeders,the motion methods for delivering and rotating the guide wire in blood vessel are described,and their mechanical realization is presented.A new resistant force detecting method is given in details.The change of the resistance force can help the operator feel the block or embolism existing in front of the guide wire.The driving torque for rotating the guide wire is developed at different positions.Using the CT reconstruction image and extracted vessel paths,the path equation of the blood vessel is obtained.Combining the shapes of the guide wire outside the blood vessel,the whole bending equation of the guide wire is obtained.That is a risk criterion in the delivering process.This process can make operations safer and man-machine interaction more reliable.A novel surgery robot for feeding guide wire is designed,and a risk criterion for the system is given.展开更多
Global climate change is expected to accelerate biological invasions,necessitating accurate risk forecasting and management strategies.However,current invasion risk assessments often overlook adaptive genomic variatio...Global climate change is expected to accelerate biological invasions,necessitating accurate risk forecasting and management strategies.However,current invasion risk assessments often overlook adaptive genomic variation,which plays a significant role in the persistence and expansion of invasive populations.Here we used Molgula manhattensis,a highly invasive ascidian,as a model to assess its invasion risks along Chinese coasts under climate change.Through population genomics analyses,we identified two genetic clusters,the north and south clusters,based on geographic distributions.To predict invasion risks,we employed the gradient forest and species distribution models to calculate genomic offset and species habitat suitability,respectively.These approaches yielded distinct predictions:the gradient forest model suggested a greater genomic offset to future climatic conditions for the north cluster(i.e.,lower invasion risks),while the species distribution model indicated higher future habitat suitability for the same cluster(i.e,higher invasion risks).By integrating these models,we found that the south cluster exhibited minor genome-niche disruptions in the future,indicating higher invasion risks.Our study highlights the complementary roles of genomic offset and habitat suitability in assessing invasion risks under climate change.Moreover,incorporating adaptive genomic variation into predictive models can significantly enhance future invasion risk predictions and enable effective management strategies for biological invasions in the future.展开更多
基金the Researchers Supporting Project(RSP2024R347),King Saud University,Riyadh,Saudi Arabia.
文摘The presence of invasive plant species poses a substantial ecological impact,thus comprehensive evaluation of their potential range and risk under the influence of climate change is necessary.This study uses maximum entropy(MaxEnt)modeling to forecast the likelihood of Leucaena leucocephala(Lam.)de Wit invasion in Saudi Arabia under present and future climate change scenarios.Utilizing the MaxEnt modeling,we integrated climatic and soil data to predict habitat suitability for the invasive species.We conducted a detailed analysis of the distribution patterns of the species,using climate variables and ecological factors.We focused on the important influence of temperature seasonality,temperature annual range,and precipitation seasonality.The distribution modeling used robust measures of area under the curve(AUC)and receiver-operator characteristic(ROC)curves,to map the invasion extent,which has a high level of accuracy in identifying appropriate habitats.The complex interaction that influenced the invasion of L.leucocephala was highlighted by the environmental parameters using Jackknife test.Presently,the actual geographic area where L.leucocephala was found in Saudi Arabia was considerably smaller than the theoretical maximum range,suggesting that it had the capacity to expand further.The MaxEnt model exhibited excellent prediction accuracy and produced reliable results based on the data from the ROC curve.Precipitation and temperature were the primary factors influencing the potential distribution of L.leucocephala.Currently,an estimated area of 216,342 km^(2)in Saudi Arabia was at a high probability of invasion by L.leucocephala.We investigated the potential for increased invasion hazards in the future due to climate change scenarios(Shared Socioeconomic Pathways(SSPs)245 and 585).The analysis of key climatic variables,including temperature seasonality and annual range,along with soil properties such as clay composition and nitrogen content,unveiled their substantial influence on the distribution dynamic of L.leucocephala.Our findings indicated a significant expansion of high risk zones.High-risk zones for L.leucocephala invasion in the current climate conditions had notable expansions projected under future climate scenarios,particularly evident in southern Makkah,Al Bahah,Madina,and Asir areas.The results,backed by thorough spatial studies,emphasize the need to reduce the possible ecological impacts of climate change on the spread of L.leucocephala.Moreover,the study provides valuable strategic insights for the management of invasion,highlighting the intricate relationship between climate change,habitat appropriateness,and the risks associated with invasive species.Proactive techniques are suggested to avoid and manage the spread of L.leucocephala,considering its high potential for future spread.This study enhances the overall comprehension of the dynamics of invasive species by combining modeling techniques with ecological knowledge.It also provides valuable information for decision-making to implement efficient conservation and management strategies in response to changing environmental conditions.
基金Supported by National Hi-tech Research and Development Program of China(863 Program,Grant No.2010AA044001)Hebei Provincial Natural Science Foundation of China(Grant No.E2015203405)
文摘To develop a robot system for minimally invasive surgery is significant,however the existing minimally invasive surgery robots are not applicable in practical operations,due to their limited functioning and weaker perception.A novel wire feeder is proposed for minimally invasive vascular interventional surgery.It is used for assisting surgeons in delivering a guide wire,balloon and stenting into a specific lesion location.By contrasting those existing wire feeders,the motion methods for delivering and rotating the guide wire in blood vessel are described,and their mechanical realization is presented.A new resistant force detecting method is given in details.The change of the resistance force can help the operator feel the block or embolism existing in front of the guide wire.The driving torque for rotating the guide wire is developed at different positions.Using the CT reconstruction image and extracted vessel paths,the path equation of the blood vessel is obtained.Combining the shapes of the guide wire outside the blood vessel,the whole bending equation of the guide wire is obtained.That is a risk criterion in the delivering process.This process can make operations safer and man-machine interaction more reliable.A novel surgery robot for feeding guide wire is designed,and a risk criterion for the system is given.
基金supported by the National Natural Science Foundation of China(grant numbers 32061143012,42106098,and 42276126).
文摘Global climate change is expected to accelerate biological invasions,necessitating accurate risk forecasting and management strategies.However,current invasion risk assessments often overlook adaptive genomic variation,which plays a significant role in the persistence and expansion of invasive populations.Here we used Molgula manhattensis,a highly invasive ascidian,as a model to assess its invasion risks along Chinese coasts under climate change.Through population genomics analyses,we identified two genetic clusters,the north and south clusters,based on geographic distributions.To predict invasion risks,we employed the gradient forest and species distribution models to calculate genomic offset and species habitat suitability,respectively.These approaches yielded distinct predictions:the gradient forest model suggested a greater genomic offset to future climatic conditions for the north cluster(i.e.,lower invasion risks),while the species distribution model indicated higher future habitat suitability for the same cluster(i.e,higher invasion risks).By integrating these models,we found that the south cluster exhibited minor genome-niche disruptions in the future,indicating higher invasion risks.Our study highlights the complementary roles of genomic offset and habitat suitability in assessing invasion risks under climate change.Moreover,incorporating adaptive genomic variation into predictive models can significantly enhance future invasion risk predictions and enable effective management strategies for biological invasions in the future.