This paper describes an inverse Gaussian process-based model to characterize the growth of metal-loss corrosion defects on energy pipelines.The model parameters are evaluated using the Bayesian methodology by combinin...This paper describes an inverse Gaussian process-based model to characterize the growth of metal-loss corrosion defects on energy pipelines.The model parameters are evaluated using the Bayesian methodology by combining the inspection data obtained from multiple inspections with the prior distributions.The Markov Chain Monte Carlo(MCMC)simulation techniques are employed to numerically evaluate the posterior marginal distribution of each individual parameter.The measurement errors associated with the ILI tools are considered in the Bayesian inference.The application of the growth model is illustrated using an example involving real inspection data collected from an in-service pipeline in Alberta,Canada.The results indicate that the model in general can predict the growth of corrosion defects reasonably well.Parametric analyses associated with the growth model as well as reliability assessment of the pipeline based on the growth model are also included in the example.The proposed model can be used to facilitate the development and application of reliability-based pipeline corrosion management.展开更多
Modern highly reliable products may have two or more quality characteristics(QCs) because of their complex structures and abundant functions. Relations between the QCs should be considered when assessing the reliabili...Modern highly reliable products may have two or more quality characteristics(QCs) because of their complex structures and abundant functions. Relations between the QCs should be considered when assessing the reliability of these products. This paper conducts a Bayesian analysis for a bivariate constant-stress accelerated degradation model based on the inverse Gaussian(IG) process. We assume that the product considered has two QCs and each of the QCs is governed by an IG process. The relationship between the QCs is described by a Frank copula function. We also assume that the stress on the products affects not only the parameters of the IG processes, but also the parameter of the Frank copula function. The Bayesian MCMC method is developed to calculate the maximum likelihood estimators(MLE) of the model parameters. The reliability function and the mean-time-to-failure(MTTF) are estimated through the calculation of the posterior samples. Finally, a simulation example is presented to illustrate the proposed bivariate constant-stress accelerated degradation model.展开更多
An effective maintenance policy optimization model can reduce maintenance cost and system operation risk. For mission-oriented systems, the degradation process changes dynamically and is monotonous and irreversible. M...An effective maintenance policy optimization model can reduce maintenance cost and system operation risk. For mission-oriented systems, the degradation process changes dynamically and is monotonous and irreversible. Meanwhile, the risk of early failure is high. Therefore, this paper proposes a dynamic condition-based maintenance(CBM) optimization model for mission-oriented system based on inverse Gaussian(IG) degradation process. Firstly, the IG process with random drift coefficient is used to describe the degradation process and the relevant probability distributions are obtained. Secondly, the dynamic preventive maintenance threshold(DPMT) function is used to control the early failure risk of the mission-oriented system, and the influence of imperfect preventive maintenance(PM)on the degradation amount and degradation rate is analysed comprehensively. Thirdly, according to the mission availability requirement, the probability formulas of different types of renewal policies are obtained, and the CBM optimization model is constructed. Finally, a numerical example is presented to verify the proposed model. The comparison with the fixed PM threshold model and the sensitivity analysis show the effectiveness and application value of the optimization model.展开更多
Fiber optical gyroscope(FOG)is a highly reliable navigation element,and the degradation trajectories of its two accuracy indexes are monotonic and non-monotonic respectively.In this paper,a flexible accelerated degrad...Fiber optical gyroscope(FOG)is a highly reliable navigation element,and the degradation trajectories of its two accuracy indexes are monotonic and non-monotonic respectively.In this paper,a flexible accelerated degradation testing(ADT)model is used for analyzing the bivariate dependent degradation process of FOG.The time-varying copulas are employed to consider the dynamic dependency structure between two marginal degradation processes as the Wiener process and the inverse Gaussian process.The statistical inference is implemented by utilizing an inference function for the margins(IFM)approach.It is demonstrated that the proposed method is powerful in modeling the joint distribution with various margins.展开更多
基金financial support provided by the Natural Sciences and Engineering Research Council(NSERC)of Canada and TransCanada Corporation through the Collaborative Research and Development(CRD)program.
文摘This paper describes an inverse Gaussian process-based model to characterize the growth of metal-loss corrosion defects on energy pipelines.The model parameters are evaluated using the Bayesian methodology by combining the inspection data obtained from multiple inspections with the prior distributions.The Markov Chain Monte Carlo(MCMC)simulation techniques are employed to numerically evaluate the posterior marginal distribution of each individual parameter.The measurement errors associated with the ILI tools are considered in the Bayesian inference.The application of the growth model is illustrated using an example involving real inspection data collected from an in-service pipeline in Alberta,Canada.The results indicate that the model in general can predict the growth of corrosion defects reasonably well.Parametric analyses associated with the growth model as well as reliability assessment of the pipeline based on the growth model are also included in the example.The proposed model can be used to facilitate the development and application of reliability-based pipeline corrosion management.
基金the National Natural Science Foundation of China(No.11671080)the Jiangsu Provincial Key Laboratory of Networked Collective Intelligence(No.BM2017002)
文摘Modern highly reliable products may have two or more quality characteristics(QCs) because of their complex structures and abundant functions. Relations between the QCs should be considered when assessing the reliability of these products. This paper conducts a Bayesian analysis for a bivariate constant-stress accelerated degradation model based on the inverse Gaussian(IG) process. We assume that the product considered has two QCs and each of the QCs is governed by an IG process. The relationship between the QCs is described by a Frank copula function. We also assume that the stress on the products affects not only the parameters of the IG processes, but also the parameter of the Frank copula function. The Bayesian MCMC method is developed to calculate the maximum likelihood estimators(MLE) of the model parameters. The reliability function and the mean-time-to-failure(MTTF) are estimated through the calculation of the posterior samples. Finally, a simulation example is presented to illustrate the proposed bivariate constant-stress accelerated degradation model.
基金supported by the National Natural Science Foundation of China (71901216)。
文摘An effective maintenance policy optimization model can reduce maintenance cost and system operation risk. For mission-oriented systems, the degradation process changes dynamically and is monotonous and irreversible. Meanwhile, the risk of early failure is high. Therefore, this paper proposes a dynamic condition-based maintenance(CBM) optimization model for mission-oriented system based on inverse Gaussian(IG) degradation process. Firstly, the IG process with random drift coefficient is used to describe the degradation process and the relevant probability distributions are obtained. Secondly, the dynamic preventive maintenance threshold(DPMT) function is used to control the early failure risk of the mission-oriented system, and the influence of imperfect preventive maintenance(PM)on the degradation amount and degradation rate is analysed comprehensively. Thirdly, according to the mission availability requirement, the probability formulas of different types of renewal policies are obtained, and the CBM optimization model is constructed. Finally, a numerical example is presented to verify the proposed model. The comparison with the fixed PM threshold model and the sensitivity analysis show the effectiveness and application value of the optimization model.
基金supported by the National Key R&D Program of China(2018YFB0104504).
文摘Fiber optical gyroscope(FOG)is a highly reliable navigation element,and the degradation trajectories of its two accuracy indexes are monotonic and non-monotonic respectively.In this paper,a flexible accelerated degradation testing(ADT)model is used for analyzing the bivariate dependent degradation process of FOG.The time-varying copulas are employed to consider the dynamic dependency structure between two marginal degradation processes as the Wiener process and the inverse Gaussian process.The statistical inference is implemented by utilizing an inference function for the margins(IFM)approach.It is demonstrated that the proposed method is powerful in modeling the joint distribution with various margins.