This study investigates the vibration transmission and suppression of a laminated composite panel with variable angle tow(VAT)designs and an attached inerter-based passive nonlinear energy sink.Based on analytical and...This study investigates the vibration transmission and suppression of a laminated composite panel with variable angle tow(VAT)designs and an attached inerter-based passive nonlinear energy sink.Based on analytical and numerical methodologies,the substructure technique is used to obtain a steady-state dynamic response and the results are verified by experimental and analytical methods.It is demonstrated that fiber orientation has a significant impact on the natural frequencies.The dynamic responses and energy transmission path characteristics are determined and evaluated by forced vibration analysis.The main vibration transmission paths inside the structure are displayed using power flow density vectors.It is demonstrated that the dynamic responses of the plate can be changed considerably by using various fiber placement schemes and passive suppression devices.In addition,it is indicated that the vibration transmission paths are significantly influenced by the tailored fiber angles for improved dynamic performance.Our investigation enhances the understanding of enhanced vibration suppression designs of variable-stiffness composite plates with attached passive devices.展开更多
基金the National Natural Science Foundation of China(Nos.12172185,U1809218,and U1864211)the Zhejiang Provincial Natural Science Foundation of China(Nos.LY22A020006,LD22E050011,and LQ23A020003)+1 种基金the Ningbo Municipal Natural Science Foundation of China(No.2022J174)the Ningbo Key Projects of Science and Technology Innovation 2025 Plan(No.2021Z124).
文摘This study investigates the vibration transmission and suppression of a laminated composite panel with variable angle tow(VAT)designs and an attached inerter-based passive nonlinear energy sink.Based on analytical and numerical methodologies,the substructure technique is used to obtain a steady-state dynamic response and the results are verified by experimental and analytical methods.It is demonstrated that fiber orientation has a significant impact on the natural frequencies.The dynamic responses and energy transmission path characteristics are determined and evaluated by forced vibration analysis.The main vibration transmission paths inside the structure are displayed using power flow density vectors.It is demonstrated that the dynamic responses of the plate can be changed considerably by using various fiber placement schemes and passive suppression devices.In addition,it is indicated that the vibration transmission paths are significantly influenced by the tailored fiber angles for improved dynamic performance.Our investigation enhances the understanding of enhanced vibration suppression designs of variable-stiffness composite plates with attached passive devices.