It is a complicated nonlinear controlling problem to conduct a two-dimensional trajectory correction of rockets.By establishing the aerodynamic correction force mathematical model of rockets on nose cone swinging,the ...It is a complicated nonlinear controlling problem to conduct a two-dimensional trajectory correction of rockets.By establishing the aerodynamic correction force mathematical model of rockets on nose cone swinging,the linear control is realized by the dynamic inverse nonlinear controlling theory and the three-time-scale separation method.The control ability and the simulation results are also tested and verified.The results show that the output responses of system track the expected curve well and the error is controlled in a given margin.The maximum correction is about±314 m in the lengthwise direction and±1 212 m in the crosswise direction from the moment of 5 s to the drop-point time when the angle of fire is 55°.Thus,based on the dynamic inverse control of feedback linearization,the trajectory correction capability of nose cone swinging can satisfy the requirements of two-dimensional ballistic correction,and the validity and effectiveness of the method are proved.展开更多
A novel fault-tolerant adaptive control methodology against the actuator faults is proposed. The actuator effectiveness factors (AEFs) are introduced to denote the healthy of actuator, and the unscented Kalman filt...A novel fault-tolerant adaptive control methodology against the actuator faults is proposed. The actuator effectiveness factors (AEFs) are introduced to denote the healthy of actuator, and the unscented Kalman filter (UKF) is employed for online estimation of both the motion states and the AEFs of mobile robot. A square root version of the UKF is introduced to improve efficiency and numerical stability. Using the information from the UKF, the reconfigurable controller is designed automatically based on an enhancement inverse dynamic control (IDC) methodology. The experiment on a 3-DOF omni-directional mobile robot is performed, and the effectiveness of the proposed method is demonstrated.展开更多
Because of its ease of implementation,a linear PID controller is generally used to control robotic manipulators.Linear controllers cannot effectively cope with uncertainties and variations in the parameters;therefore,...Because of its ease of implementation,a linear PID controller is generally used to control robotic manipulators.Linear controllers cannot effectively cope with uncertainties and variations in the parameters;therefore,nonlinear controllers with robust performance which can cope with these are recommended.The sliding mode control(SMC)is a robust state feedback control method for nonlinear systems that,in addition having a simple design,efficiently overcomes uncertainties and disturbances in the system.It also has a very fast transient response that is desirable when controlling robotic manipulators.The most critical drawback to SMC is chattering in the control input signal.To solve this problem,in this study,SMC is used with a boundary layer(SMCBL)to eliminate the chattering and improve the performance of the system.The proposed SMCBL was compared with inverse dynamic control(IDC),a conventional nonlinear control method.The kinematic and dynamic equations of the IRB-120 robot manipulator were initially extracted completely and accurately,and then the control of the robot manipulator using SMC was evaluated.For validation,the proposed control method was implemented on a 6-DOF IRB-120 robot manipulator in the presence of uncertainties.The results were simulated,tested,and compared in the MATLAB/Simulink environment.To further validate our work,the results were tested and confirmed experimentally on an actual IRB-120 robot manipulator.展开更多
This paper presents a computationally efficient real-time trajectory planning framework for typical unmanned combat aerial vehicle (UCAV) performing autonomous air-to-surface (A/S) attack. It combines the benefits...This paper presents a computationally efficient real-time trajectory planning framework for typical unmanned combat aerial vehicle (UCAV) performing autonomous air-to-surface (A/S) attack. It combines the benefits of inverse dynamics optimization method and receding horizon optimal control technique. Firstly, the ground attack trajectory planning problem is mathematically formulated as a receding horizon optimal control problem (RHC-OCP). In particular, an approximate elliptic launch acceptable region (LAR) model is proposed to model the critical weapon delivery constraints. Secondly, a planning algorithm based on inverse dynamics optimization, which has high computational efficiency and good convergence properties, is developed to solve the RHCOCP in real-time. Thirdly, in order to improve robustness and adaptivity in a dynamic and uncer- tain environment, a two-degree-of-freedom (2-DOF) receding horizon control architecture is introduced and a regular real-time update strategy is proposed as well, and the real-time feedback can be achieved and the not-converged situations can be handled. Finally, numerical simulations demon- strate the efficiency of this framework, and the results also show that the presented technique is well suited for real-time implementation in dynamic and uncertain environment.展开更多
Since the aerodynamic center moving backward sharply in hypersonic flight,the stability margin of the hypersonic vehicle increases largely while the maneuverability decreases.We proposed a novel method to solve this c...Since the aerodynamic center moving backward sharply in hypersonic flight,the stability margin of the hypersonic vehicle increases largely while the maneuverability decreases.We proposed a novel method to solve this contradiction.We used relaxed static stability(RSS)to improve the maneuverability in hypersonic flight,and designed the stability augmentation system(SAS)to ensure the stability in subsonic flight.Therefore,the relationship between static stability and maneuverability was quantitatively analyzed in the first step,and the numerical value of RSS was obtained on the premise of good maneuverability.Secondly,the relationship between static stability and aerodynamic parameters was quantitatively analyzed.We properly adjusted aerodynamic parameters based on the quantitative relationship to achieve the specific static stability set in the first step,and therefore provided the engineering realization methods.The vehicle will be statically unstable in subsonic flight with the specific static stability.Lastly,SAS was needed to ensure the stability of the vehicle in subsonic flight.Simulation studies were conducted by comparing the linear SAS to the nonlinear SAS,and the results showed that the nonlinear dynamicinversion controller can synthesize with proportional-integrall-derivative(PID)controller robustly and stabilize the hypersonic vehicle.展开更多
基金Project(9140A05030109HK01)supported by Equipment Pre-research Foundation,China
文摘It is a complicated nonlinear controlling problem to conduct a two-dimensional trajectory correction of rockets.By establishing the aerodynamic correction force mathematical model of rockets on nose cone swinging,the linear control is realized by the dynamic inverse nonlinear controlling theory and the three-time-scale separation method.The control ability and the simulation results are also tested and verified.The results show that the output responses of system track the expected curve well and the error is controlled in a given margin.The maximum correction is about±314 m in the lengthwise direction and±1 212 m in the crosswise direction from the moment of 5 s to the drop-point time when the angle of fire is 55°.Thus,based on the dynamic inverse control of feedback linearization,the trajectory correction capability of nose cone swinging can satisfy the requirements of two-dimensional ballistic correction,and the validity and effectiveness of the method are proved.
基金This project is supported by National Hi-tech Research and Development Program of China (863 Program, No. 2003AA421020).
文摘A novel fault-tolerant adaptive control methodology against the actuator faults is proposed. The actuator effectiveness factors (AEFs) are introduced to denote the healthy of actuator, and the unscented Kalman filter (UKF) is employed for online estimation of both the motion states and the AEFs of mobile robot. A square root version of the UKF is introduced to improve efficiency and numerical stability. Using the information from the UKF, the reconfigurable controller is designed automatically based on an enhancement inverse dynamic control (IDC) methodology. The experiment on a 3-DOF omni-directional mobile robot is performed, and the effectiveness of the proposed method is demonstrated.
文摘Because of its ease of implementation,a linear PID controller is generally used to control robotic manipulators.Linear controllers cannot effectively cope with uncertainties and variations in the parameters;therefore,nonlinear controllers with robust performance which can cope with these are recommended.The sliding mode control(SMC)is a robust state feedback control method for nonlinear systems that,in addition having a simple design,efficiently overcomes uncertainties and disturbances in the system.It also has a very fast transient response that is desirable when controlling robotic manipulators.The most critical drawback to SMC is chattering in the control input signal.To solve this problem,in this study,SMC is used with a boundary layer(SMCBL)to eliminate the chattering and improve the performance of the system.The proposed SMCBL was compared with inverse dynamic control(IDC),a conventional nonlinear control method.The kinematic and dynamic equations of the IRB-120 robot manipulator were initially extracted completely and accurately,and then the control of the robot manipulator using SMC was evaluated.For validation,the proposed control method was implemented on a 6-DOF IRB-120 robot manipulator in the presence of uncertainties.The results were simulated,tested,and compared in the MATLAB/Simulink environment.To further validate our work,the results were tested and confirmed experimentally on an actual IRB-120 robot manipulator.
基金supported by the National Defense Foundation of China(No.403060103)
文摘This paper presents a computationally efficient real-time trajectory planning framework for typical unmanned combat aerial vehicle (UCAV) performing autonomous air-to-surface (A/S) attack. It combines the benefits of inverse dynamics optimization method and receding horizon optimal control technique. Firstly, the ground attack trajectory planning problem is mathematically formulated as a receding horizon optimal control problem (RHC-OCP). In particular, an approximate elliptic launch acceptable region (LAR) model is proposed to model the critical weapon delivery constraints. Secondly, a planning algorithm based on inverse dynamics optimization, which has high computational efficiency and good convergence properties, is developed to solve the RHCOCP in real-time. Thirdly, in order to improve robustness and adaptivity in a dynamic and uncer- tain environment, a two-degree-of-freedom (2-DOF) receding horizon control architecture is introduced and a regular real-time update strategy is proposed as well, and the real-time feedback can be achieved and the not-converged situations can be handled. Finally, numerical simulations demon- strate the efficiency of this framework, and the results also show that the presented technique is well suited for real-time implementation in dynamic and uncertain environment.
基金supported in part by the National Natural Science Foundation of China(Nos.61673209,61741313)the Funding of Jiangsu Innovation Program for Graduate Education(No.CXZZ13_0170)+3 种基金the Funding for Outstanding Doctoral Dissertation in NUAA(No.BCXJ13-06)the Jiangsu Six Peak of Talents Program(No.KTHY-027)the Funding of China Launch Vehicle Technology Innovation Program of University and Institute(No.CALT201503)the Aeronautical Science Foundation(No.2016ZA52009)
文摘Since the aerodynamic center moving backward sharply in hypersonic flight,the stability margin of the hypersonic vehicle increases largely while the maneuverability decreases.We proposed a novel method to solve this contradiction.We used relaxed static stability(RSS)to improve the maneuverability in hypersonic flight,and designed the stability augmentation system(SAS)to ensure the stability in subsonic flight.Therefore,the relationship between static stability and maneuverability was quantitatively analyzed in the first step,and the numerical value of RSS was obtained on the premise of good maneuverability.Secondly,the relationship between static stability and aerodynamic parameters was quantitatively analyzed.We properly adjusted aerodynamic parameters based on the quantitative relationship to achieve the specific static stability set in the first step,and therefore provided the engineering realization methods.The vehicle will be statically unstable in subsonic flight with the specific static stability.Lastly,SAS was needed to ensure the stability of the vehicle in subsonic flight.Simulation studies were conducted by comparing the linear SAS to the nonlinear SAS,and the results showed that the nonlinear dynamicinversion controller can synthesize with proportional-integrall-derivative(PID)controller robustly and stabilize the hypersonic vehicle.