期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
POLYNOMIAL INVERSE INTEGRATING FACTORS 被引量:8
1
作者 J.Chavarriga, H.Giacomini & J.Gine (Departament de Matematica, Universitat de Lleida. Av. Jaume Ⅱ, 69, 25001 Lleida,Spain Laboratoire de Mathematiques et Physique Theorique C.N.R.S. UPRES A6083. Faculte des Sciences et Techniques. Universite de Tours. P 《Annals of Differential Equations》 2000年第4期320-329,共10页
Let (P, Q) be a C1 vector field defined in an open subset U IR2. We call inverse integrating factor a C1 solution V(x, y) of the equation . In previous works it has been shown that this function plays an important ro... Let (P, Q) be a C1 vector field defined in an open subset U IR2. We call inverse integrating factor a C1 solution V(x, y) of the equation . In previous works it has been shown that this function plays an important role in the problem of the center and in the determination of limit cycles. In this paper we obtain necessary conditions for a polynomial vector field (P, Q) to have a polynomial inverse integrating factor. 展开更多
关键词 POLYNOMIAL inverse integrating factor
原文传递
Weierstrass Integrability of Complex Differential Equations
2
作者 Jaume LLIBRE Claudia VALLS 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2021年第10期1497-1506,共10页
We characterize the complex differential equations of the form dy/dx=a_(n)(x)y^)n_+a_(n-1)(x)y^(n-1)+…+a_(1)(x)y+a_(0)(x) where a_(j)(x) are meromorphic functions in the variable x for j = 0,..., n that admit either ... We characterize the complex differential equations of the form dy/dx=a_(n)(x)y^)n_+a_(n-1)(x)y^(n-1)+…+a_(1)(x)y+a_(0)(x) where a_(j)(x) are meromorphic functions in the variable x for j = 0,..., n that admit either a Weierstrass first integral or a Weierstrass inverse integrating factor. 展开更多
关键词 Weierstrass first integrals Weierstrass inverse integrating factor complex differential equations
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部