For the past few years,germanium-based semiconductor spintronics has attracted considerable interest due to its potential for integration into mainstream semiconductor technology.The main challenges in the development...For the past few years,germanium-based semiconductor spintronics has attracted considerable interest due to its potential for integration into mainstream semiconductor technology.The main challenges in the development of modern semiconductor spintronics are the generation,detection,and manipulation of spin currents.Here,the transport characteristics of a spin current generated by spin pumping through a GeBi semiconductor barrier in Y_(3)Fe_(5)O_(12)/GeBi/Pt heterostructures were investigated systematically.The effective spin-mixing conductance and inverse spin Hall voltage to quantitatively describe the spin transport characteristics were extracted.The spin-injection efficiency in the Y_(3)Fe_(5)O_(12)/GeBi/Pt heterostructures is comparable to that of the Y_(3)Fe_(5)O_(12)/Pt bilayer,and the inverse spin Hall voltage exponential decays with the increase in the barrier thickness.Furthermore,the band gap of the GeBi layer was tuned by changing the Bi content.The spin-injection efficiency at the YIG/semiconductor interface and the spin transportation within the semiconductor barrier are related to the band gap of the GeBi layer.Our results may be used as guidelines for the fabrication of efficient spin transmission structures and may lead to further studies on the impacts of different kinds of barrier materials.展开更多
Spin pumping in yttrium-iron-garnet(YIG)/nonmagnetic-metal(NM) layer systems under ferromagnetic resonance(FMR) conditions is a popular method of generating spin current in the NM layer.A good understanding of t...Spin pumping in yttrium-iron-garnet(YIG)/nonmagnetic-metal(NM) layer systems under ferromagnetic resonance(FMR) conditions is a popular method of generating spin current in the NM layer.A good understanding of the spin current source is essential in extracting spin Hall angle of the NM and in potential spintronics applications.It is widely believed that spin current is pumped from precessing YIG magnetization into NM layer.Here,by combining microwave absorption and DC-voltage measurements on thin YIG/Pt and YIG/NM_1/NM_2(NM_1 =Cu or Al,NM_2 =Pt or Ta),we unambiguously showed that spin current in NM,instead of from the precessing YIG magnetization,came from the magnetized NM surface(in contact with thin YIG),either due to the magnetic proximity effect(MPE) or from the inevitable diffused Fe ions from YIG to NM.This conclusion is reached through analyzing the FMR microwave absorption peaks with the DC-voltage peak from the inverse spin Hall effect(ISHE).The voltage signal is attributed to the magnetized NM surface,hardly observed in the conventional FMR experiments,and was greatly amplified when the electrical detection circuit was switched on.展开更多
We investigate the spin to charge conversion phenomena in Y_(3)Fe_(5)O_(12)/Pt/Co_(1-x)Tb_(x)/Pt multilayers by both the spin pumping and spin Seebeck effects.We find that the spin transport efficiency is irrelevant t...We investigate the spin to charge conversion phenomena in Y_(3)Fe_(5)O_(12)/Pt/Co_(1-x)Tb_(x)/Pt multilayers by both the spin pumping and spin Seebeck effects.We find that the spin transport efficiency is irrelevant to magnetization states of the perpendicular magnetized Co;Tb;films,which can be attributed to the symmetry requirement of the inverse transverse spin Hall effect.Furthermore,the spin transmission efficiency is significantly affected by the film concentration,revealing the dominant role of extrinsic impurity scattering caused by Tb impurity.The present results provide further guidance for enhancing the spin transport efficiency and developing spintronic devices.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFA0718701)the China Postdoctoral Science Foundation(Grant No.2022M722888)the National Natural Science Foundation of China(Grant Nos.12174347 and 12004340).
文摘For the past few years,germanium-based semiconductor spintronics has attracted considerable interest due to its potential for integration into mainstream semiconductor technology.The main challenges in the development of modern semiconductor spintronics are the generation,detection,and manipulation of spin currents.Here,the transport characteristics of a spin current generated by spin pumping through a GeBi semiconductor barrier in Y_(3)Fe_(5)O_(12)/GeBi/Pt heterostructures were investigated systematically.The effective spin-mixing conductance and inverse spin Hall voltage to quantitatively describe the spin transport characteristics were extracted.The spin-injection efficiency in the Y_(3)Fe_(5)O_(12)/GeBi/Pt heterostructures is comparable to that of the Y_(3)Fe_(5)O_(12)/Pt bilayer,and the inverse spin Hall voltage exponential decays with the increase in the barrier thickness.Furthermore,the band gap of the GeBi layer was tuned by changing the Bi content.The spin-injection efficiency at the YIG/semiconductor interface and the spin transportation within the semiconductor barrier are related to the band gap of the GeBi layer.Our results may be used as guidelines for the fabrication of efficient spin transmission structures and may lead to further studies on the impacts of different kinds of barrier materials.
基金Project supported by the National Basic Research Program of China(Grant Nos.2015CB921502 and 2013CB922303)the National Natural Science Foundation of China(Grant Nos.11474184,116627805,and 11504203)+2 种基金the 111 Project(Grant No.B13029)Zhang Yin and Wang Xiangrong were supported by the Hong Kong RGC Grants(Grant Nos.16301816 and 605413)Wu Yong and Jiang Yong were supported by the National Natural Science Foundation of China(Grant No.51501007)
文摘Spin pumping in yttrium-iron-garnet(YIG)/nonmagnetic-metal(NM) layer systems under ferromagnetic resonance(FMR) conditions is a popular method of generating spin current in the NM layer.A good understanding of the spin current source is essential in extracting spin Hall angle of the NM and in potential spintronics applications.It is widely believed that spin current is pumped from precessing YIG magnetization into NM layer.Here,by combining microwave absorption and DC-voltage measurements on thin YIG/Pt and YIG/NM_1/NM_2(NM_1 =Cu or Al,NM_2 =Pt or Ta),we unambiguously showed that spin current in NM,instead of from the precessing YIG magnetization,came from the magnetized NM surface(in contact with thin YIG),either due to the magnetic proximity effect(MPE) or from the inevitable diffused Fe ions from YIG to NM.This conclusion is reached through analyzing the FMR microwave absorption peaks with the DC-voltage peak from the inverse spin Hall effect(ISHE).The voltage signal is attributed to the magnetized NM surface,hardly observed in the conventional FMR experiments,and was greatly amplified when the electrical detection circuit was switched on.
基金supported by the National Key Basic Research Project of China(Grant No.2016YFA0300600)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB33020300)the National Natural Science Foundation of China(Grant Nos.11604375 and 11874416)。
文摘We investigate the spin to charge conversion phenomena in Y_(3)Fe_(5)O_(12)/Pt/Co_(1-x)Tb_(x)/Pt multilayers by both the spin pumping and spin Seebeck effects.We find that the spin transport efficiency is irrelevant to magnetization states of the perpendicular magnetized Co;Tb;films,which can be attributed to the symmetry requirement of the inverse transverse spin Hall effect.Furthermore,the spin transmission efficiency is significantly affected by the film concentration,revealing the dominant role of extrinsic impurity scattering caused by Tb impurity.The present results provide further guidance for enhancing the spin transport efficiency and developing spintronic devices.