In electromagnetic countermeasures circumstances,synthetic aperture radar(SAR)imagery usually suffers from severe quality degradation from modulated interrupt sampling repeater jamming(MISRJ),which usually owes consid...In electromagnetic countermeasures circumstances,synthetic aperture radar(SAR)imagery usually suffers from severe quality degradation from modulated interrupt sampling repeater jamming(MISRJ),which usually owes considerable coherence with the SAR transmission waveform together with periodical modulation patterns.This paper develops an MISRJ suppression algorithm for SAR imagery with online dictionary learning.In the algorithm,the jamming modulation temporal properties are exploited with extracting and sorting MISRJ slices using fast-time autocorrelation.Online dictionary learning is followed to separate real signals from jamming slices.Under the learned representation,time-varying MISRJs are suppressed effectively.Both simulated and real-measured SAR data are also used to confirm advantages in suppressing time-varying MISRJs over traditional methods.展开更多
Inverse Synthetic Aperture Radar (ISAR) is an important means for target classification, recognition, identification and many other military applications. A simulation model of ISAR system is established after analyzi...Inverse Synthetic Aperture Radar (ISAR) is an important means for target classification, recognition, identification and many other military applications. A simulation model of ISAR system is established after analyzing the principle of ISAR imaging, and then several ECM (Electronic Counter Measurement) techniques are studied. Simulation experiments are done on the basis of such research. The experimental result of the research can be used for ECM equipment.展开更多
As same as the conventional inverse synthetic aperture radar(ISAR), the compressed ISAR also requires the echo signal based motion compensation, which consists of the range alignment and the phase autofoeusing. A ph...As same as the conventional inverse synthetic aperture radar(ISAR), the compressed ISAR also requires the echo signal based motion compensation, which consists of the range alignment and the phase autofoeusing. A phase autofocusing algorithm for compressed ISAR imaging is presented. In the algorithm, phase autofocusing for the sparse ISAR echoes is accomplished using the eigenvector method. Experimental results validate the effectiveness of the algorithm.展开更多
For ballistic mid-course targets,in addition to constant orbital motion,the target or any structure on the target undergoes micro-motion dynamics,such as spin,precession and tumbling.The micro-motion characteristics o...For ballistic mid-course targets,in addition to constant orbital motion,the target or any structure on the target undergoes micro-motion dynamics,such as spin,precession and tumbling.The micro-motion characteristics of the ballistic mid-course targets were discussed.The target motion model and inverse synthetic aperture radar(ISAR) imaging model for this kind of targets were built.Then,the influence of micro-motion on ISAR imaging based on the established imaging model was presented.The computer simulation to get mid-course target echoes from static darkroom electromagnetic scattering data based on the established target motion model was realized.The imaging results of computer simulation show the validity of ISAR imaging analysis for micro-motion targets.展开更多
For ship targets with complex motion,it is difficult for the traditional monostatic inverse synthetic aperture radar(ISAR)imaging to improve the cross-range resolution by increasing of accumulation time.In this paper,...For ship targets with complex motion,it is difficult for the traditional monostatic inverse synthetic aperture radar(ISAR)imaging to improve the cross-range resolution by increasing of accumulation time.In this paper,a distributed ISAR imaging algorithm is proposed to improve the cross-range resolution for the ship target.Multiple stations are used to observe the target in a short time,thereby the effect of incoherence caused by the complex motion of the ship can be reduced.The signal model of ship target with three-dimensional(3-D)rotation is constructed firstly.Then detailed analysis about the improvement of crossrange resolution is presented.Afterward,we propose the methods of parameters estimation to solve the problem of the overlap or gap,which will cause a loss of resolution and is necessary for subsequent processing.Besides,the compressed sensing(CS)method is applied to reconstruct the echoes with gaps.Finally,numerical simulations are presented to verify the effectiveness and the robustness of the proposed algorithm.展开更多
The scattering points in a plasma sheath characterized with coupled velocities can cause pulse compression mismatching,which results in displacement and energy diffusion in the onedimension range profile.To solve this...The scattering points in a plasma sheath characterized with coupled velocities can cause pulse compression mismatching,which results in displacement and energy diffusion in the onedimension range profile.To solve this problem,we deduce the echo model of the plasma-sheathenveloped reentry object.By estimating the coupled velocities,we propose a compensation method to correct the defocus of an inverse synthetic aperture radar(ISAR)image in range dimension to improve the quality of the ISAR images.The simulation results suggest that the echoes from different regions of the surface of the reentry object have various coupling velocities,and the higher the coupled velocity,the more serious the displacement and energy diffusion in the range dimension.Our proposed method can correct the range dimension aberration.Two measurement metrics were used to evaluate the improvement of the compensation method.展开更多
基金supported by the National Natural Science Foundation of China(61771372,61771367,62101494)the National Outstanding Youth Science Fund Project(61525105)+1 种基金Shenzhen Science and Technology Program(KQTD20190929172704911)the Aeronautic al Science Foundation of China(2019200M1001)。
文摘In electromagnetic countermeasures circumstances,synthetic aperture radar(SAR)imagery usually suffers from severe quality degradation from modulated interrupt sampling repeater jamming(MISRJ),which usually owes considerable coherence with the SAR transmission waveform together with periodical modulation patterns.This paper develops an MISRJ suppression algorithm for SAR imagery with online dictionary learning.In the algorithm,the jamming modulation temporal properties are exploited with extracting and sorting MISRJ slices using fast-time autocorrelation.Online dictionary learning is followed to separate real signals from jamming slices.Under the learned representation,time-varying MISRJs are suppressed effectively.Both simulated and real-measured SAR data are also used to confirm advantages in suppressing time-varying MISRJs over traditional methods.
基金Supported by the National Key Lab Project of China(No.51435020203DZ0207)
文摘Inverse Synthetic Aperture Radar (ISAR) is an important means for target classification, recognition, identification and many other military applications. A simulation model of ISAR system is established after analyzing the principle of ISAR imaging, and then several ECM (Electronic Counter Measurement) techniques are studied. Simulation experiments are done on the basis of such research. The experimental result of the research can be used for ECM equipment.
基金Supported by the National Natural Science Foundation of China(61071165)the Program for NewCentury Excellent Talents in University(NCET-09-0069)the Defense Industrial Technology Development Program(B2520110008)~~
文摘As same as the conventional inverse synthetic aperture radar(ISAR), the compressed ISAR also requires the echo signal based motion compensation, which consists of the range alignment and the phase autofoeusing. A phase autofocusing algorithm for compressed ISAR imaging is presented. In the algorithm, phase autofocusing for the sparse ISAR echoes is accomplished using the eigenvector method. Experimental results validate the effectiveness of the algorithm.
基金Project(61360020102) supported by the National Basic Research Development Program of China
文摘For ballistic mid-course targets,in addition to constant orbital motion,the target or any structure on the target undergoes micro-motion dynamics,such as spin,precession and tumbling.The micro-motion characteristics of the ballistic mid-course targets were discussed.The target motion model and inverse synthetic aperture radar(ISAR) imaging model for this kind of targets were built.Then,the influence of micro-motion on ISAR imaging based on the established imaging model was presented.The computer simulation to get mid-course target echoes from static darkroom electromagnetic scattering data based on the established target motion model was realized.The imaging results of computer simulation show the validity of ISAR imaging analysis for micro-motion targets.
基金supported by the National Natural Science Foundation of China(61871146)the Fundamental Research Funds for the Central Universities(FRFCU5710093720)。
文摘For ship targets with complex motion,it is difficult for the traditional monostatic inverse synthetic aperture radar(ISAR)imaging to improve the cross-range resolution by increasing of accumulation time.In this paper,a distributed ISAR imaging algorithm is proposed to improve the cross-range resolution for the ship target.Multiple stations are used to observe the target in a short time,thereby the effect of incoherence caused by the complex motion of the ship can be reduced.The signal model of ship target with three-dimensional(3-D)rotation is constructed firstly.Then detailed analysis about the improvement of crossrange resolution is presented.Afterward,we propose the methods of parameters estimation to solve the problem of the overlap or gap,which will cause a loss of resolution and is necessary for subsequent processing.Besides,the compressed sensing(CS)method is applied to reconstruct the echoes with gaps.Finally,numerical simulations are presented to verify the effectiveness and the robustness of the proposed algorithm.
基金supported by National Natural Science Foundation of China(No.61971330)。
文摘The scattering points in a plasma sheath characterized with coupled velocities can cause pulse compression mismatching,which results in displacement and energy diffusion in the onedimension range profile.To solve this problem,we deduce the echo model of the plasma-sheathenveloped reentry object.By estimating the coupled velocities,we propose a compensation method to correct the defocus of an inverse synthetic aperture radar(ISAR)image in range dimension to improve the quality of the ISAR images.The simulation results suggest that the echoes from different regions of the surface of the reentry object have various coupling velocities,and the higher the coupled velocity,the more serious the displacement and energy diffusion in the range dimension.Our proposed method can correct the range dimension aberration.Two measurement metrics were used to evaluate the improvement of the compensation method.
基金supported in part by the Shanghai Aerospace Science and Technology Innovation Foundation(No.SAST 2021-026)the Fund of Prospec⁃tive Layout of Scientific Research for Nanjing University of Aeronautics and Astronautics(NUAA).
文摘随着空间技术的飞速发展,空间态势感知能力需求不断增加。与传统光学传感器相比,逆合成孔径雷达(Inverse synthetic aperture radar,ISAR)具有全天候、远距离高分辨率成像的能力,且成像不受光照条件的影响。此外,空间态势感知系统需要对周围航天器进行准确的评估,因此对空间目标部件识别能力的需求日益迫切。本文提出了一种基于YOLOv5结构的Multitask⁃YOLO网络,用于卫星ISAR图像中卫星帆板的识别和分割。首先,本文添加了分割解耦头来实现网络的分割功能。然后用空间金字塔池快速算法(Spatial pyramid pooling fast,SPPF)和距离交并比算法(Distance intersection over union,DIoU)代替原有结构,避免图像失真,加快收敛速度。通过在通道中引入注意机制,提高了分割和识别的准确性。最后使用模拟卫星的ISAR图像进行实验。结果表明,所提出的Multitask⁃YOLO网络高效、准确地实现了部件的识别和分割。与其他的识别和分割网络相比,该网络的平均精度(mean Average precision,mAP)和平均交并比(mean Intersection over union,mIoU)提高了约5%。此外,该网络的运行速度高达16.4 GFLOP,优于传统的多任务网络的性能。