Intermediate casings in the build sections are subject to severe wear in extended-reach drilling. This paper presents a new method for predicting the depth of a wear groove on the intermediate casing. According to ene...Intermediate casings in the build sections are subject to severe wear in extended-reach drilling. This paper presents a new method for predicting the depth of a wear groove on the intermediate casing. According to energy principle and dynamic accumulation of casing wear by tool joints, a model is established to calculate the wear area on the inner wall of the casing. The relationship functions between the wear groove depth and area are obtained based on the geometry relationship between the drillstring and the wear section and the assumption that the casing wear groove is crescent-shaped. The change of casing wear groove depth versus drilling footage under different-sized drillstrings is also discussed. A mechanical model is proposed for predicting casing wear location, which is based on the well trajectory and drillstring movement. The casing wear groove depth of a planned well is predicted with inversion of the casing wear factor from the drilled well and necessarily revised to improve the prediction accuracy for differences between the drilled well and the planned well. The method for predicting casing wear in extended-reach drilling is verified through actual case study. The effect of drillstring size on casing wear should be taken into account in casing wear prediction.展开更多
The precise integration method proposed for linear time-invariant homogeneous dynamic systems can provide accurate numerical results that approach an exact solution at integration points. However, difficulties arise w...The precise integration method proposed for linear time-invariant homogeneous dynamic systems can provide accurate numerical results that approach an exact solution at integration points. However, difficulties arise when the algorithm is used for non-homogeneous dynamic systems due to the inverse matrix calculation required. In this paper, the structural dynamic equalibrium equations are converted into a special form, the inverse matrix calculation is replaced by the Crout decomposition method to solve the dynamic equilibrium equations, and the precise integration method without the inverse matrix calculation is obtained. The new algorithm enhances the present precise integration method by improving both the computational accuracy and efficiency. Two numerical examples are given to demonstrate the validity and efficiency of the proposed algorithm.展开更多
The blockage effectiveness problem for the runway cut-blanked modes of intelligence missile is described using probability integral method,when entry angle error and open cabin position error exist. On the condition o...The blockage effectiveness problem for the runway cut-blanked modes of intelligence missile is described using probability integral method,when entry angle error and open cabin position error exist. On the condition of determined open cabin position error,the allowable range of entry angle error is inversely calculated with interdiction probability. The calculated results indicate that the method mentioned can estimate the intelligence missile interdiction efficiency to the runway and the range of entry angle error,which provides available basis for analyzing the intelligence missile attack assignment on the way.展开更多
Geothermal with features of large reserves and non-pollution has been one of the most important energy. China has significant geothermal resources. There are rich hydrothermal resources in Xinji, which has been in dev...Geothermal with features of large reserves and non-pollution has been one of the most important energy. China has significant geothermal resources. There are rich hydrothermal resources in Xinji, which has been in development for 5 years. However, hot water continues to decrease because of extensive exploitation and utilization. We selected exploration area as study area, build a set of numerical models of Guantao formation on the basis of actual geological conditions. We get the distribution of hydraulic conductivity from 1.7 m/d to 1.9 m/d by parameter inversion using historical water level monitoring data, and simulation effect is good. We calculate the maximum permissible exploitation under the limitation of 200 m in depth in 50 years which is about 2.2 million m3/a. The results will provide theoretic support for plan making of geothermal exploitation.展开更多
基金support from the national projects (Grant No.: 2009ZX05009-005 and 2010CB226703)
文摘Intermediate casings in the build sections are subject to severe wear in extended-reach drilling. This paper presents a new method for predicting the depth of a wear groove on the intermediate casing. According to energy principle and dynamic accumulation of casing wear by tool joints, a model is established to calculate the wear area on the inner wall of the casing. The relationship functions between the wear groove depth and area are obtained based on the geometry relationship between the drillstring and the wear section and the assumption that the casing wear groove is crescent-shaped. The change of casing wear groove depth versus drilling footage under different-sized drillstrings is also discussed. A mechanical model is proposed for predicting casing wear location, which is based on the well trajectory and drillstring movement. The casing wear groove depth of a planned well is predicted with inversion of the casing wear factor from the drilled well and necessarily revised to improve the prediction accuracy for differences between the drilled well and the planned well. The method for predicting casing wear in extended-reach drilling is verified through actual case study. The effect of drillstring size on casing wear should be taken into account in casing wear prediction.
文摘The precise integration method proposed for linear time-invariant homogeneous dynamic systems can provide accurate numerical results that approach an exact solution at integration points. However, difficulties arise when the algorithm is used for non-homogeneous dynamic systems due to the inverse matrix calculation required. In this paper, the structural dynamic equalibrium equations are converted into a special form, the inverse matrix calculation is replaced by the Crout decomposition method to solve the dynamic equilibrium equations, and the precise integration method without the inverse matrix calculation is obtained. The new algorithm enhances the present precise integration method by improving both the computational accuracy and efficiency. Two numerical examples are given to demonstrate the validity and efficiency of the proposed algorithm.
文摘The blockage effectiveness problem for the runway cut-blanked modes of intelligence missile is described using probability integral method,when entry angle error and open cabin position error exist. On the condition of determined open cabin position error,the allowable range of entry angle error is inversely calculated with interdiction probability. The calculated results indicate that the method mentioned can estimate the intelligence missile interdiction efficiency to the runway and the range of entry angle error,which provides available basis for analyzing the intelligence missile attack assignment on the way.
基金supported by thermal response test(TRT)and numerical modeling with vertical ground heat exchanger in media sand(41302189)the research on the behavior characteristic of As and REE in high temperature geothermal fluid(1415042249)geothermal survey of Xiamen-Qiongbei region in Southeast coastal(12120115045901)
文摘Geothermal with features of large reserves and non-pollution has been one of the most important energy. China has significant geothermal resources. There are rich hydrothermal resources in Xinji, which has been in development for 5 years. However, hot water continues to decrease because of extensive exploitation and utilization. We selected exploration area as study area, build a set of numerical models of Guantao formation on the basis of actual geological conditions. We get the distribution of hydraulic conductivity from 1.7 m/d to 1.9 m/d by parameter inversion using historical water level monitoring data, and simulation effect is good. We calculate the maximum permissible exploitation under the limitation of 200 m in depth in 50 years which is about 2.2 million m3/a. The results will provide theoretic support for plan making of geothermal exploitation.