As a primary parameter in the water quality model for shallow bays, the dispersion coefficient is traditionally determined with a trial-and-error method, which is time-consuming and requires much experience. In this p...As a primary parameter in the water quality model for shallow bays, the dispersion coefficient is traditionally determined with a trial-and-error method, which is time-consuming and requires much experience. In this paper, based on the measured data of chemical oxygen demand (COD), the dispersion coefficient is calculated using an inversion method. In the process, the regularization method is applied to treat the ill-posedness, and an operator identity perturbation method is used to obtain the solu- tion. Using the model with an inverted dispersion coefficient, the distributions of COD, inorganic nitrogen (IN), and inorganic phosphorus (IP) in Bohai Bay are predicted and compared with the measured data. The results indicate that the method is feasible and the inverted dispersion coefficient can be used to predict other pollutant distribution. This method may also be further extended to the inversion of other parameters in the water quality model.展开更多
The underground water quality model with non-linear inversion problem is ill-posed, and boils down to solving the minimum of nonlinear function. Genetic algorithms are adopted in a number of individuals of groups by i...The underground water quality model with non-linear inversion problem is ill-posed, and boils down to solving the minimum of nonlinear function. Genetic algorithms are adopted in a number of individuals of groups by iterative search to find the optimal solution of the problem, the encoding strings as its operational objective, and achieving the iterative calculations by the genetic operators. It is an effective method of inverse problems of groundwater, with incomparable advantages and practical significances.展开更多
Water quality models are important tools to support the optimization of aquatic ecosystem rehabilitation programs and assess their efficiency. Basing on the flow conditions of the Daqinghe River Mouth of the Dianchi L...Water quality models are important tools to support the optimization of aquatic ecosystem rehabilitation programs and assess their efficiency. Basing on the flow conditions of the Daqinghe River Mouth of the Dianchi Lake, China, a two-dimensional water quality model was developed in the research. The hydrodynamics module was numerically solved by the alternating direction iteration (ADI) method. The parameters of the water quality module were obtained through the in situ experiments and the laboratory analyses that were conducted from 2006 to 2007. The model was calibrated and verified by the observation data in 2007. Among the four modelled key variables, i.e., water level, COD (in CODcr), NH4+-N and PO43-P the minimum value of the coefficient of determination (COD) was 0.69, indicating the model performed reasonably well. The developed model was then applied to simulate the water quality changes at a downstream cross-section assuming that the designed restoration programs were implemented. According to the simulated results, the restoration programs could cut down the loads of COD and PO43-P about 15%. Such a load reduction, unfortunately, would have very little effect on the NH4^+-N removal. Moreover, the water quality at the outlet cross-section would be still in class V (3838-02), indicating more measures should be taken to further reduce the loads. The study demonstrated the capability of water quality models to support aquatic ecosystem restorations.展开更多
A multi-constituent water quality model is presented,Which relates carbonaceous biochemical oxygen demand (CBOD),amonia (NH3-N), nitrite(NO2-N), nitrate(NO3-N) and dissolvedoxygen(DO). The parameters are solved by Mar...A multi-constituent water quality model is presented,Which relates carbonaceous biochemical oxygen demand (CBOD),amonia (NH3-N), nitrite(NO2-N), nitrate(NO3-N) and dissolvedoxygen(DO). The parameters are solved by Marquardt Method (i. e.,Dampled Least Square Method) while initial values inoptimization are produced by Monte-Carlo Method. The Potential ofthe method as a parameter estimation aid is demonstrated for theapplication to the Liangyi Rver, JiangSu Province of China and by aspecial comparison with Gauss Method.展开更多
Identification results of water quality model parameter directly affect the accuracy of water quality numerical simulation. To overcome the difficulty of parameter identification caused by the measurement’s uncertain...Identification results of water quality model parameter directly affect the accuracy of water quality numerical simulation. To overcome the difficulty of parameter identification caused by the measurement’s uncertainty, a new method which is the coupling of Finite Difference Method and Markov Chain Monte Carlo is developed to identify the parameters of water quality model in this paper. Taking a certain long distance open channel as an example, the effects to the results of parameters identification with different noise are discussed under steady and un-steady non-uniform flow scenarios. And also this proposed method is compared with finite difference method and Nelder Mead Simplex. The results show that it can give better results by the new method. It has good noise resistance and provides a new way to identify water quality model parameters.展开更多
This paper presents selected results of research connected with the development of a (3D) geostatistical hydrogeochemical model of the Klodzko Drainage Basin, dedicated to the spatial and time variation in the selec...This paper presents selected results of research connected with the development of a (3D) geostatistical hydrogeochemical model of the Klodzko Drainage Basin, dedicated to the spatial and time variation in the selected quality parameters of underground water in the Klodzko water intake area (SW part of Poland) [1-6]. The research covers the period 1977-2012. Spatial analyses of the variation in different quality parameters, between others, Fe [gFe/m3], Mn [gMn/m3], ammonium ion [gNH4+/m3] contents and oxidation capacity [gO2/m3], were carried out on the basis of the chemical determinations of the quality parameters of underground water samples taken from the wells in the water intake area [2-4]. Spatial and time variation in the parameters was analyzed on the basis of archival data (period 1977-1999) for 22 (pump and siphon) wells, later data obtained (November 2011) from tests of water taken from 14 existing wells and the latest data (January 2012) acquired from 3 new piezometers, which were made in other locations in the relevant area. Thematic databases, containing original data on coordinates X, Y (latitude, longitude) and Z (terrain elevation and time-years) and on regionalized variables, i.e. the underground water quality parameters in the Klodzko water intake area determined for different analytical configurations (22 wells, 14 wells, 14 wells + 3 piezometers), were created [2]. Both archival data (acquired in the years 1977-1999) and the latest data (collected in 2011-2012) were analyzed. These data were subjected to spatial analyses [2-6] using statistical and geostatistical methods [7-12]. The evaluation of basic statistics of the investigated quality parameters, including their histograms of distributions, scatter diagrams between these parameters and also correlation coefficients r, were presented in this article. The directional semivariogram function and the ordinary (block) kriging procedure were used to build the 3D geostatistical model. The geostatistical parameters of the theoretical models of directional semivariograms of the studied water quality parameters, calculated along the time interval and the well depth (taking into account the terrain elevation), were used in the ordinary (block) kriging estimation. The obtained results of estimation, allowed to determine the levels of increased values Z* of studied underground water quality parameters [2, 4-6]. Generally, the behaviour of the underground water quality parameters has been found to vary in space and time. Thanks to the spatial analyses of the variation in the quality parameters in the Klodzko underground water intake area some regularities (trends) in the variation in water quality have been identified.展开更多
Using remote sensing technology for water quality evaluation is an inevitable trend in marine environmental monitoring. However, fewer categories of water quality parameters can be monitored by remote sensing technolo...Using remote sensing technology for water quality evaluation is an inevitable trend in marine environmental monitoring. However, fewer categories of water quality parameters can be monitored by remote sensing technology than the 35 specified in GB3097-1997 Marine Water Quality Standard. Therefore, we considered which parameters must be selected by remote sensing and how to model for water quality evaluation using the finite parameters. In this paper, focused on Leizhou Peninsula nearshore waters, we found N, P, COD, PH and DO to be the dominant parameters of water quality by analyzing measured data. Then, mathematical statistics was used to determine that the relationship among the five parameters was COD〉DO〉P〉N〉pH. Finally, five-parameter, fourparameter and three-parameter water quality evaluation models were established and compared. The results showed that COD, DO, P and N were the necessary parameters for remote sensing evaluation of the Leizhou Peninsula nearshore water quality, and the optimal comprehensive water quality evaluation model was the four- parameter model. This work may serve as a reference for monitoring the quality of other marine waters by remote sensing.展开更多
In order to improve reservoir fluid recognition, the sensitivity of array resistivity response to the difference of the invasion properties in both oil-bearing layers and water layers is analyzed. Then the primary inv...In order to improve reservoir fluid recognition, the sensitivity of array resistivity response to the difference of the invasion properties in both oil-bearing layers and water layers is analyzed. Then the primary inversion is carried out based on the array resistivity log. The mud invasion process is numerically simulated based on the oil-water flow equation and water convection diffusion equation. The results show that the radial resistivity of a fresh mud-invaded oil-bearing layer presents complex distribution characteristics, such as nonlinear increase, increasing to decreasing and low resistivity annulus, and the resistive invasion profile of a water layer is monotonic. Under specific conditions, array resistivity log can reflect these changes and the array induction log is more sensitive. Nevertheless, due to the effect of factors like large invasion depth, reservoir physical and oil-bearing properties, the measured apparent resistivity may differ greatly from the actual mud filtrate invasion profile in an oil-bearing layer. We proposed a five-parameter formation model to simulate the complex resistivity distribution of fresh mud-invaded formation. Then, based on the principle of non-linear least squares, the measured array resistivity log is used for inversion with the Marquardt method. It is demonstrated that the inverted resistivity is typically non-monotonic in oil-bearing layers and is monotonic in water layers. Processing of some field data shows that this is helpful in achieving efficient reservoir fluid recognition.展开更多
A systems approach is used to describe the generation and variation of wastewater in an urban area. This is a multivariable system and its combined response at the outlet of this system, which is usually the entrance ...A systems approach is used to describe the generation and variation of wastewater in an urban area. This is a multivariable system and its combined response at the outlet of this system, which is usually the entrance ofa wastewater treatment plant, depends on a number of environmental (precipitation and temperature) as well as social (size of the urban area, population changes, water consumption per capita) variables. There is a large number of available models and tools for describing the urban water system, however, the interactions between the individual components are rarely considered within the same modelling framework. In this paper a parsimonious methodology is proposed in order to understand and estimate the wastewater generation and its characteristics in an urban area using any information provided by the available data. The model incorporates both the flows of stormwater discharge and wastewater production that arrive to the wastewater treatment plant. A state dependent variable is introduced to simulate the consumptive uses in the urban area. Data availability and system's complexity affect the ability to achieve enhanced model performance, however, in the presented case study, preliminary results from the application of the presented model in the Greater Athens Area illustrate the potential of the conceptual modelling approach.展开更多
The large-scale convergence of homotopy parametric inversion method on the water quality model parameters calculated was used,with application in parametric inversion calculation of total phosphorus of Beijing Miyun R...The large-scale convergence of homotopy parametric inversion method on the water quality model parameters calculated was used,with application in parametric inversion calculation of total phosphorus of Beijing Miyun Reservoir.Through calculated and compared the error of sedimentation rate by homotopy parametric inversion method and genetic inversion calculation method,the results indicate that homotopy parametric inversion method has good stability,calculating speed,and even if the initial selection away from the objective function,the solution still has a good convergence.展开更多
基金supported by the National Natural Science Foundation of China (No. 10872144)the Global Environmental Foundation (No. TF053183)
文摘As a primary parameter in the water quality model for shallow bays, the dispersion coefficient is traditionally determined with a trial-and-error method, which is time-consuming and requires much experience. In this paper, based on the measured data of chemical oxygen demand (COD), the dispersion coefficient is calculated using an inversion method. In the process, the regularization method is applied to treat the ill-posedness, and an operator identity perturbation method is used to obtain the solu- tion. Using the model with an inverted dispersion coefficient, the distributions of COD, inorganic nitrogen (IN), and inorganic phosphorus (IP) in Bohai Bay are predicted and compared with the measured data. The results indicate that the method is feasible and the inverted dispersion coefficient can be used to predict other pollutant distribution. This method may also be further extended to the inversion of other parameters in the water quality model.
文摘The underground water quality model with non-linear inversion problem is ill-posed, and boils down to solving the minimum of nonlinear function. Genetic algorithms are adopted in a number of individuals of groups by iterative search to find the optimal solution of the problem, the encoding strings as its operational objective, and achieving the iterative calculations by the genetic operators. It is an effective method of inverse problems of groundwater, with incomparable advantages and practical significances.
基金supported by the National Hi-Tech Research and Development Program (863) of China (No.2007AA06A405, 2005AA6010100401)
文摘Water quality models are important tools to support the optimization of aquatic ecosystem rehabilitation programs and assess their efficiency. Basing on the flow conditions of the Daqinghe River Mouth of the Dianchi Lake, China, a two-dimensional water quality model was developed in the research. The hydrodynamics module was numerically solved by the alternating direction iteration (ADI) method. The parameters of the water quality module were obtained through the in situ experiments and the laboratory analyses that were conducted from 2006 to 2007. The model was calibrated and verified by the observation data in 2007. Among the four modelled key variables, i.e., water level, COD (in CODcr), NH4+-N and PO43-P the minimum value of the coefficient of determination (COD) was 0.69, indicating the model performed reasonably well. The developed model was then applied to simulate the water quality changes at a downstream cross-section assuming that the designed restoration programs were implemented. According to the simulated results, the restoration programs could cut down the loads of COD and PO43-P about 15%. Such a load reduction, unfortunately, would have very little effect on the NH4^+-N removal. Moreover, the water quality at the outlet cross-section would be still in class V (3838-02), indicating more measures should be taken to further reduce the loads. The study demonstrated the capability of water quality models to support aquatic ecosystem restorations.
文摘A multi-constituent water quality model is presented,Which relates carbonaceous biochemical oxygen demand (CBOD),amonia (NH3-N), nitrite(NO2-N), nitrate(NO3-N) and dissolvedoxygen(DO). The parameters are solved by Marquardt Method (i. e.,Dampled Least Square Method) while initial values inoptimization are produced by Monte-Carlo Method. The Potential ofthe method as a parameter estimation aid is demonstrated for theapplication to the Liangyi Rver, JiangSu Province of China and by aspecial comparison with Gauss Method.
文摘Identification results of water quality model parameter directly affect the accuracy of water quality numerical simulation. To overcome the difficulty of parameter identification caused by the measurement’s uncertainty, a new method which is the coupling of Finite Difference Method and Markov Chain Monte Carlo is developed to identify the parameters of water quality model in this paper. Taking a certain long distance open channel as an example, the effects to the results of parameters identification with different noise are discussed under steady and un-steady non-uniform flow scenarios. And also this proposed method is compared with finite difference method and Nelder Mead Simplex. The results show that it can give better results by the new method. It has good noise resistance and provides a new way to identify water quality model parameters.
文摘This paper presents selected results of research connected with the development of a (3D) geostatistical hydrogeochemical model of the Klodzko Drainage Basin, dedicated to the spatial and time variation in the selected quality parameters of underground water in the Klodzko water intake area (SW part of Poland) [1-6]. The research covers the period 1977-2012. Spatial analyses of the variation in different quality parameters, between others, Fe [gFe/m3], Mn [gMn/m3], ammonium ion [gNH4+/m3] contents and oxidation capacity [gO2/m3], were carried out on the basis of the chemical determinations of the quality parameters of underground water samples taken from the wells in the water intake area [2-4]. Spatial and time variation in the parameters was analyzed on the basis of archival data (period 1977-1999) for 22 (pump and siphon) wells, later data obtained (November 2011) from tests of water taken from 14 existing wells and the latest data (January 2012) acquired from 3 new piezometers, which were made in other locations in the relevant area. Thematic databases, containing original data on coordinates X, Y (latitude, longitude) and Z (terrain elevation and time-years) and on regionalized variables, i.e. the underground water quality parameters in the Klodzko water intake area determined for different analytical configurations (22 wells, 14 wells, 14 wells + 3 piezometers), were created [2]. Both archival data (acquired in the years 1977-1999) and the latest data (collected in 2011-2012) were analyzed. These data were subjected to spatial analyses [2-6] using statistical and geostatistical methods [7-12]. The evaluation of basic statistics of the investigated quality parameters, including their histograms of distributions, scatter diagrams between these parameters and also correlation coefficients r, were presented in this article. The directional semivariogram function and the ordinary (block) kriging procedure were used to build the 3D geostatistical model. The geostatistical parameters of the theoretical models of directional semivariograms of the studied water quality parameters, calculated along the time interval and the well depth (taking into account the terrain elevation), were used in the ordinary (block) kriging estimation. The obtained results of estimation, allowed to determine the levels of increased values Z* of studied underground water quality parameters [2, 4-6]. Generally, the behaviour of the underground water quality parameters has been found to vary in space and time. Thanks to the spatial analyses of the variation in the quality parameters in the Klodzko underground water intake area some regularities (trends) in the variation in water quality have been identified.
基金The Science and Technology Project of Guangdong Province under contract No.2014A010103030the Postdoctoral Science Foundation of Zhejiang under contract No.BSH1301015the Supported by Foundation for Distinguished Young Talents in Higher Education of Guangdong Province No.GDOU2013050233
文摘Using remote sensing technology for water quality evaluation is an inevitable trend in marine environmental monitoring. However, fewer categories of water quality parameters can be monitored by remote sensing technology than the 35 specified in GB3097-1997 Marine Water Quality Standard. Therefore, we considered which parameters must be selected by remote sensing and how to model for water quality evaluation using the finite parameters. In this paper, focused on Leizhou Peninsula nearshore waters, we found N, P, COD, PH and DO to be the dominant parameters of water quality by analyzing measured data. Then, mathematical statistics was used to determine that the relationship among the five parameters was COD〉DO〉P〉N〉pH. Finally, five-parameter, fourparameter and three-parameter water quality evaluation models were established and compared. The results showed that COD, DO, P and N were the necessary parameters for remote sensing evaluation of the Leizhou Peninsula nearshore water quality, and the optimal comprehensive water quality evaluation model was the four- parameter model. This work may serve as a reference for monitoring the quality of other marine waters by remote sensing.
基金funded by the National Natural Science Foundation (41174009)National Major Science &Technology Projects (2011ZX05020, 2011ZX05035,2011ZX05003, 2011ZX05007)
文摘In order to improve reservoir fluid recognition, the sensitivity of array resistivity response to the difference of the invasion properties in both oil-bearing layers and water layers is analyzed. Then the primary inversion is carried out based on the array resistivity log. The mud invasion process is numerically simulated based on the oil-water flow equation and water convection diffusion equation. The results show that the radial resistivity of a fresh mud-invaded oil-bearing layer presents complex distribution characteristics, such as nonlinear increase, increasing to decreasing and low resistivity annulus, and the resistive invasion profile of a water layer is monotonic. Under specific conditions, array resistivity log can reflect these changes and the array induction log is more sensitive. Nevertheless, due to the effect of factors like large invasion depth, reservoir physical and oil-bearing properties, the measured apparent resistivity may differ greatly from the actual mud filtrate invasion profile in an oil-bearing layer. We proposed a five-parameter formation model to simulate the complex resistivity distribution of fresh mud-invaded formation. Then, based on the principle of non-linear least squares, the measured array resistivity log is used for inversion with the Marquardt method. It is demonstrated that the inverted resistivity is typically non-monotonic in oil-bearing layers and is monotonic in water layers. Processing of some field data shows that this is helpful in achieving efficient reservoir fluid recognition.
文摘A systems approach is used to describe the generation and variation of wastewater in an urban area. This is a multivariable system and its combined response at the outlet of this system, which is usually the entrance ofa wastewater treatment plant, depends on a number of environmental (precipitation and temperature) as well as social (size of the urban area, population changes, water consumption per capita) variables. There is a large number of available models and tools for describing the urban water system, however, the interactions between the individual components are rarely considered within the same modelling framework. In this paper a parsimonious methodology is proposed in order to understand and estimate the wastewater generation and its characteristics in an urban area using any information provided by the available data. The model incorporates both the flows of stormwater discharge and wastewater production that arrive to the wastewater treatment plant. A state dependent variable is introduced to simulate the consumptive uses in the urban area. Data availability and system's complexity affect the ability to achieve enhanced model performance, however, in the presented case study, preliminary results from the application of the presented model in the Greater Athens Area illustrate the potential of the conceptual modelling approach.
文摘The large-scale convergence of homotopy parametric inversion method on the water quality model parameters calculated was used,with application in parametric inversion calculation of total phosphorus of Beijing Miyun Reservoir.Through calculated and compared the error of sedimentation rate by homotopy parametric inversion method and genetic inversion calculation method,the results indicate that homotopy parametric inversion method has good stability,calculating speed,and even if the initial selection away from the objective function,the solution still has a good convergence.