In order to solve the problem of pressure shock on the continuous rotary electro-hydraulic servo motor,the mathematical models of pressure gradient under the structure of pre-compressed chamber and U-shaped groove wer...In order to solve the problem of pressure shock on the continuous rotary electro-hydraulic servo motor,the mathematical models of pressure gradient under the structure of pre-compressed chamber and U-shaped groove were established.The optimal structure dimensions of the pre-compressed chamber and the U-shaped groove were determined.The fluid models were established by Solidworks under the four structures of triangular groove,triangular groove with pre-compression chamber,U-shaped groove and U-shaped groove with pre-compression chamber.Simulation analysis of depressurization process of fluid models was performed based on FLUENT.The pressure nephograms of different buffer structures were compared and analyzed,and the pressure change curves and pressure gradient change curves in the process of depressurization were obtained.The results show that the optimal edge length of the pre-compressed chamber of continuous rotary electro-hydraulic servo motor is 20 mm in the process of decompression.The pressure reduction effect is the best when the width of the U-shaped groove is 1.5 mm and the depth is 1.65 mm.The U-shaped groove structure with pre-compression chamber is more conducive to alleviate the pressure shock phenomenon of the motor compared with different combine buffer structures.展开更多
讨论船舶单相交流负载的特性情况,重点研究能够承受船舶220 V交流非线性负载引起的强冲击电流的高性能逆变技术,通过电压开环伯德图对比分析数/模混合控制策略与数字控制策略的响应速度,并搭建一台220 V/10 k W的单相全桥逆变电源样机,...讨论船舶单相交流负载的特性情况,重点研究能够承受船舶220 V交流非线性负载引起的强冲击电流的高性能逆变技术,通过电压开环伯德图对比分析数/模混合控制策略与数字控制策略的响应速度,并搭建一台220 V/10 k W的单相全桥逆变电源样机,实验结果验证了船舶抗负载冲击高性能逆变技术的可行性。展开更多
基金Project(51975164)supported by the National Natural Science Foundation of ChinaProject(201908230358)supported by the China Scholarship CouncilProject(2019-KYYWF-0205)supported by the Fundamental Research Foundation for Universities of Heilongjiang Province,China。
文摘In order to solve the problem of pressure shock on the continuous rotary electro-hydraulic servo motor,the mathematical models of pressure gradient under the structure of pre-compressed chamber and U-shaped groove were established.The optimal structure dimensions of the pre-compressed chamber and the U-shaped groove were determined.The fluid models were established by Solidworks under the four structures of triangular groove,triangular groove with pre-compression chamber,U-shaped groove and U-shaped groove with pre-compression chamber.Simulation analysis of depressurization process of fluid models was performed based on FLUENT.The pressure nephograms of different buffer structures were compared and analyzed,and the pressure change curves and pressure gradient change curves in the process of depressurization were obtained.The results show that the optimal edge length of the pre-compressed chamber of continuous rotary electro-hydraulic servo motor is 20 mm in the process of decompression.The pressure reduction effect is the best when the width of the U-shaped groove is 1.5 mm and the depth is 1.65 mm.The U-shaped groove structure with pre-compression chamber is more conducive to alleviate the pressure shock phenomenon of the motor compared with different combine buffer structures.