Friction stir keyholeless spot welding(FSKSW) using a retractable pin for 1.0 mm thick galvanized mild steel and 3 mm thick AZ31 B magnesium alloy in a lap configuration was investigated.The process variables were o...Friction stir keyholeless spot welding(FSKSW) using a retractable pin for 1.0 mm thick galvanized mild steel and 3 mm thick AZ31 B magnesium alloy in a lap configuration was investigated.The process variables were optimized in terms of the joint strength.The effects of the stacking sequence on joint formation and the joining mechanism of FSKSW AZ31B-to-mild steel joints were also analyzed.It shows that the process window and joint strength are strongly influenced by the stacking sequence of the workpieces.While the process window is narrow and unstable for FSKSW of a magnesium-to-steel stack-up,a desirable process was established for the steel-to-magnesium stacking sequence,a desirable process and higher strength joint can be got when the steel-to-magnesium stacking sequence.XRD phase and EPMA analyses of the FSKSW joint showed that the intermetallic compounds are formed at the steel-to-magnesium interface,and the element diffusion between the mild steel and AZ31 B magnesium alloy revealed that the joining methods for FSKSW joints is the main mechanical joining along with certain metallurgical bonding.展开更多
In order to explore the influence of welding parameters and to investigate the Al alloy (AA) nugget formation process, a comprehensive model involving electrical-thermal-mechanical and metallurgical analysis was estab...In order to explore the influence of welding parameters and to investigate the Al alloy (AA) nugget formation process, a comprehensive model involving electrical-thermal-mechanical and metallurgical analysis was established to numerically display the resistance spot welding (RSW) process within multiple fields and understand the AA-RSW physics. A multi-disciplinary finite element method (FEM) framework and a empirical sub-model were built to analyze the affecting factors on weld nugget and the underlying nature of welding physics with dynamic simulation procedure. Specifically, a counter-intuitive phenomenon of the resistance time-variation caused by the transient inverse virtual variation (TIVV) effect was highlighted and analyzed on the basis of welding current and temperature distribution simulation. The empirical model describing the TIVV phenomenon was used for modifying the dynamic resistance simulation during the AA spot welding process. The numerical and experimental results show that the proposed multi-field FEM model agrees with the measured AA welding feature, and the modified dynamic resistance model captures the physics of nugget growth and the electrical-thermal behavior under varying welding current and fluctuating heat input.展开更多
Keyhole at the end of a weld prepared by friction stir welding(FSW)is one of the major issues that impede the application of FSW.To address this issue,a keyhole filling technique was proposed in this paper,which is ba...Keyhole at the end of a weld prepared by friction stir welding(FSW)is one of the major issues that impede the application of FSW.To address this issue,a keyhole filling technique was proposed in this paper,which is based on the principles of resistance spot welding(RSW).A three-phase secondary rectifier resistance spot welder was applied as the experimental instrument for filling the keyhole in the center of friction stir spot weld(FSSW).The test sheet is a 2024-T4 aluminium alloy with a thickness of 6.0mm.The experiments results show that the filled joint strength is improved by 26.12%since the area is increased for the plug in the keyhole.And there are two kinds of dimples in the tensile fracture-equiaxial dimples and long dimples.The filled joint involves the fusion welding zone(FWZ),pressure welding zone(PWZ),melted plug zone(MPZ),and plastic deformation zone(PDZ).The FWZ and the PWZ is the melting bond and diffusion bond between the plug and keyhole,respectively.The MPZ is the center part and the PDZ is upper or lower part of the plug.展开更多
This paper studies the friction stir spot welding of AA2024-T3/AA7075-T6 Al alloys in the ambient and underwater environments by clarifying the nugget features,microstructure,fracture and mechanical properties of the ...This paper studies the friction stir spot welding of AA2024-T3/AA7075-T6 Al alloys in the ambient and underwater environments by clarifying the nugget features,microstructure,fracture and mechanical properties of the joints.The results show that the water-cooling medium exhibits a significant heat absorption capacity in the AA2024-T3/AA7075-T6 welded joint.Nugget features such as stir zone width,circular imprints,average grain sizes,and angular inter-material hooking are reduced by the watercooling effect in the joints.Narrower whitish(intercalated structures)bands are formed in the underwater joints while Mg2Si and Al2CuMg precipitates are formed in the ambient and the underwater welded joints respectively.An increase in tool rotational speed(600e1400 rpm)and plunge depth(0.1 e0.5 mm)increases the tensile-shear force of the welded AA2024-T3/AA7075-T6 joints in both the ambient and underwater environments.The maximum tensile-shear forces of 5900 N and 6700 N were obtained in the ambient and the underwater welds respectively.展开更多
Based on the existing component models in the Pspice software package, a combined model for Insulat- ed the Bipolar Transistor (IGBT) is established, in which a non - linear is introduced to represent the parasitic ...Based on the existing component models in the Pspice software package, a combined model for Insulat- ed the Bipolar Transistor (IGBT) is established, in which a non - linear is introduced to represent the parasitic capacitance. Using this model, computerized simulation is conducted for the FB - ZVZCS - PWM soft - ewitching converter,the switching and energy-transferring characteristics of the components are analyzed.The simulation results are testified by experiments.It is proved that by abopting appropriate models,computerized simulation becomes an effective tool for investigation of arc welding inverter power source.展开更多
The joining of metal and polymer is an increasingly important method to get lightweight components in the development of manufacturing industry- nowadays. In this artiele, metal and polymer lap joint was achieved by m...The joining of metal and polymer is an increasingly important method to get lightweight components in the development of manufacturing industry- nowadays. In this artiele, metal and polymer lap joint was achieved by means of resistance spot welding (RSW) and ultrasonic assistance welding (UAW). The joining mechanism of lap joint was analyzed by OM, TEM on microstructure at the interface of lap joints and XPS and IR spectra was discussed based on the following different ones: mechanical-interlocking, diffusion bond and coordination bond. The results showed that it was the combined action that played an important role in the effective joining work. Besides, ultrasonic assistance was used in the study to aid welding process based on its high-frequency ultrasonic vibration, which made joints shaping better and improved tensile strength visibly contrast to joints with the same lower heat input parameters.展开更多
An axisymmetric finite element model is developed to simulate the temperature field of resistant spot welding according to the process characters of nugget formation of non equal stainless steel sheets. A simulation ...An axisymmetric finite element model is developed to simulate the temperature field of resistant spot welding according to the process characters of nugget formation of non equal stainless steel sheets. A simulation method of the interaction of electrical and thermal factors is presented. The spot welding process of nugget formation is simulated using hard and soft welding technique norms. The heating characters of soft and hard norms determine the differences in the process of nugget formation and determine the finally shape and offset of nugget. Experimental verification shows that the model prediction agrees well with the practical.展开更多
An ultrasonic test of spot welding for stainless steel is conducted. Based on wavelet packet decomposition, the ultrasonic echo signal has been analyzed deeply in time - frequency domain, which can easily distinguish ...An ultrasonic test of spot welding for stainless steel is conducted. Based on wavelet packet decomposition, the ultrasonic echo signal has been analyzed deeply in time - frequency domain, which can easily distinguish the nugget from the corona bond. The 2D C-scan images produced by ultrasonic C scan which contribute to quantitatively calculate the nugget diameter for the computer are further analyzed. The spot welding nugget diameter can be automatically obtained by image enhancement, edge detection and equivalent diameter algorithm procedure. The ultrasonic detection values in this paper show good agreement with the metallographic measured values. The mean value of normal distribution curve is 0.006 67, and the standard deviation is 0.087 11. Ultrasonic C-scan test based on wavelet packet signal analysis is of high accuracy and stability.展开更多
Advanced high strength steel (AHSS) has been widely used in the automobile industry.The resistance spot welding performance of DP980 and Q&P980 steels was studied through comparing the two steels’welding current ...Advanced high strength steel (AHSS) has been widely used in the automobile industry.The resistance spot welding performance of DP980 and Q&P980 steels was studied through comparing the two steels’welding current range,tensile shear strength (TSS),cross tension strength (CTS),weld spots’microhardness,etc.The following conclusions were achieved:It is easy for both DP980 and Q&P980 steels to get a nugget size bigger than 4 mm,they all have welding current ranges exceeding 2 kA and high weld strength.展开更多
A novel detection method of support vector machine (SVM) based on fractal dimension of signals is presented. And models of SVM are made based on nugget size defects of spot welding. Classification using these traine...A novel detection method of support vector machine (SVM) based on fractal dimension of signals is presented. And models of SVM are made based on nugget size defects of spot welding. Classification using these trained SVM models is done to signals of spot welding. It is shown from effect of different SVM models that these models with different inputs. In detection of defects, these models with inputs including sound signal have a high percentage of accuracy, the detection accuracy of these models with inputs including voltage signal will reduce. So the SVM models based on fractal dimensions of sound are some optimal nondestructive detection ones. At last a comparison between SVM detection model and ANNS detection model is researched which indicates that SVM is a more effective measure than Artificial neural networks in detection of nugget size defects during spot welding.展开更多
Deep cryogenic treatment technology of electrodes is put forward to improve electrode life of resistance spot welding of aluminum alloy LF2. Deep cryogenic treatment makes electrode life for spot welding aluminum allo...Deep cryogenic treatment technology of electrodes is put forward to improve electrode life of resistance spot welding of aluminum alloy LF2. Deep cryogenic treatment makes electrode life for spot welding aluminum alloy improve. The specific resistivity of the deep cryogenic treatment electrodes is tested and experimental results show that specific resistivity is decreased sharply. The temperature field and the influence of deep cryogenic treatment on the electrode tip temperature during spot welding aluminium alloy is studied by numerical simulation method with the software ANSYS. The axisymmetric finite element model of mechanical, thermal and electrical coupled analysis of spot welding process is developed. The numerical simulation results show that the influence of deep cryogenic treatment on electrode tip temperature is very large.展开更多
Lightweight ZEK100-0 Mg alloy and A16022-T43 Al alloy with an Ag interlayer were joined via ultrasonic spot welding(USW),focusing on the microstructural change and tensile lap shear strength of the welded joints in re...Lightweight ZEK100-0 Mg alloy and A16022-T43 Al alloy with an Ag interlayer were joined via ultrasonic spot welding(USW),focusing on the microstructural change and tensile lap shear strength of the welded joints in relation to welding energy.Mg/Al interface was superseded by Mg/Ag and Al/Ag interfaces,and unfavorable Mg门A-intermetallic compound was eliminated.Ag foil was observed to be intact in the nugget center,while it was broken or dissolved at the nugget edge at high welding energy levels.The diffusion layer at the Mg/Ag interface consisted of two distinctive sub-layers:Mg3Ag intermetallic compound adjoining Ag foil,and Mg3Ag-l-Mg eutectic structure adjacent to Mg.Only a thin diffusion layer consisting mainly of Ag3Al occurred al lhe Al/Ag interface.The tensile lap shear strength first increased,reached its peak value,and then decreased with increasing welding energy.The shear strength achieved in the present study was〜31%higher than that of the joint without interlayer.Interfacial failure occurred at all energy levels,with Ag foil particles or fragments being stuck on both Mg and Al sides due to its intense interaction with Mg and Al via accelerated diffusion during USW.The results obtained pave the way for the challenging dissimilar welding between Mg and Al alloys.展开更多
Sound dissimilar lap joints were achieved via ultrasonic spot welding (USW), which is a solid-state joining technique. The addition of Sn interlayer during USW effectively blocked the formation of brittle Al12Mg17 i...Sound dissimilar lap joints were achieved via ultrasonic spot welding (USW), which is a solid-state joining technique. The addition of Sn interlayer during USW effectively blocked the formation of brittle Al12Mg17 intermetallic compound in the Mg-Al dissimilar joints without interlayer, and led to the presence of a distinctive composite-like Sn and Mg2Sn eutectic structure in both Mg- Al and Mg-high strength low alloy (HSLA) steel joints. The lap shear strength of both types of dissimilar joints with a Sn interlayer was significantly higher than that of the corresponding dissimilar joints without interlayer. Failure during the tensile lap shear tests occurred mainly in the mode of cohesive failure in the Mg- Al dissimilar joints and in the mode of partial cohesive failure and partial nugget pull-out in the Mg-HSLA steel dissimilar joints.展开更多
The effects of deep cryogenic treatment on mechanical behavior of a Cu-Cr-Zr alloy for electrodes of spot welding were investigated employing Brinell-hardness testing unit, abrasion examination machine, electronic alm...The effects of deep cryogenic treatment on mechanical behavior of a Cu-Cr-Zr alloy for electrodes of spot welding were investigated employing Brinell-hardness testing unit, abrasion examination machine, electronic almighty testing machine and X-ray stress analyzer. Tensile fracture surfaces of the alloy were characterized by scanning electronic microscope (SEM) with energy dispersive X-ray spectroscopy (EDS). The results showed that, after deep cryogenic treatment, σb and σ0.2 increased 23 MPa and 21 MPa respectively, the wear rate of the alloy exhibited the trend of decrease with the decreasing temperature and increasing time of deep cryogenic treatment, and the surface residual stress of the alloy was partially eliminated by deep cryogenic treatment.展开更多
A visual sensing system was established to monitor the weld pool in laser spot welding. The top-hat and bottom-hat transformation algorithms based on mathematical morphology were used to compensate for non-uniform con...A visual sensing system was established to monitor the weld pool in laser spot welding. The top-hat and bottom-hat transformation algorithms based on mathematical morphology were used to compensate for non-uniform contrast of weld pool edge. Moreover, the canny edge detector was applied to extract the weld paol profile. The edge detected results show that the morphological operation is obviously superior to the traditional contrast enhancement method. In addition, the combination of dilation and erosion was applied to eliminate the irrelevant edge details, and the smooth weld pool edge was acquired. Based on the image processing technology described above, the dynamic process of weld pool diameter during laser spot welding was obtained.展开更多
The AZ31 magnesium alloy with a thickness of 1.8 mm was welded by the probeless friction stir spot welding process without Zn interlayer.The influence of process parameters on joint microstructure and mechanical prope...The AZ31 magnesium alloy with a thickness of 1.8 mm was welded by the probeless friction stir spot welding process without Zn interlayer.The influence of process parameters on joint microstructure and mechanical properties was investigated by using different rotating speeds and dwell time.Microstructure of joints is divided into three regions:stir zone,thermomechanically-affected zone and heat-affected zone.With the increase of rotation speed and dwell time,the depth of stir zone gradually increases,and hook defects extend from the interface of two plates to the surface of the upper plate.The tensile shear strength of joints and two fracture modes(shear fracture and plug fracture)are closely related to hook defects.The maximum tensile shear strength of the joint is 4.22 kN when rotation speed and dwell time are 1180 r/min and 9 s,respectively.Microhardness value and its fluctuation in upper sheet are evidently higher than those of the lower sheet.展开更多
The multisensor information fusion technology is adopted for real time measuring the four parameters which are connected closely with the weld nugget size(welding current, electrode displacement, dynamic resistance, ...The multisensor information fusion technology is adopted for real time measuring the four parameters which are connected closely with the weld nugget size(welding current, electrode displacement, dynamic resistance, welding time), thus much more original information is obtained. In this way, the difficulty caused by measuring indirectly weld nugget size can be decreased in spot welding quality control, and the stability of spot welding quality can be improved. According to this method, two-dimensional fuzzy controllers are designed with the information fusion result as input and the thyristor control signal as output. The spot welding experimental results indicate that the spot welding quality intelligent control method based on multiscnsor information fusion technology can compensate the influence caused by variable factors in welding process and ensure the stability of welding quality.展开更多
Nugget splash during aluminum alloys spot welding has a detrimental effect on weld nugget integrity, strength and durability of the welded joints. This investigation is performed to identify nugget splash from voltage...Nugget splash during aluminum alloys spot welding has a detrimental effect on weld nugget integrity, strength and durability of the welded joints. This investigation is performed to identify nugget splash from voltage signals because these are easily accessible on-line. In the present work, we propose a novel method based on the wavelet packet transform and its energy spectrum for pattern recognition of splash signal. The result demonstrates that this novel method is more accuracy and a useful way of monitoring the spot welding quality.展开更多
Expulsion is an undesired event during resistance spot welding because the weld quality deteriorates. It is the ejection of molten metal from the weld nugget which usually occurs due to applying a high current for a s...Expulsion is an undesired event during resistance spot welding because the weld quality deteriorates. It is the ejection of molten metal from the weld nugget which usually occurs due to applying a high current for a short welding time. Expulsion has a significant impact on the final yield strength of the weld, thus the detection and characterization of expulsion events is significant for the quality assurance of resistance spot welds. In this study, hardness mapping, using a scanning hardness machine, was used as a quality assurance technique for re- sistance spot welding. Hardness tests were conducted on a resistance spot welded sample to prepare a hardness map. The test results showed good correlation between the hardness map and metallographic cross sections. The technique also provided further fundamental understand- ing of the resistance spot welding process, especially regarding the occurrence of expulsion in the nugget.展开更多
A two-dimensional axisymmetric finite element model is developed to analyze the transient thermal and mechanical behaviors of the Resistance Spot Welding (RSW) process using commercial software ANSYS. Firstly a dire...A two-dimensional axisymmetric finite element model is developed to analyze the transient thermal and mechanical behaviors of the Resistance Spot Welding (RSW) process using commercial software ANSYS. Firstly a direct-coupled electrical-thermal Finite Element Analysis (FEA) is performed to analyze the transient thermal characteristics of the RSW process. Then based on the thermal results a sequential coupled thermo-elastic-plastic analysis is conducted to determine the mechanical features of the RSW process. The thermal history of the whole process and the temperature distribution of the weldment are obtained through the analysis. The mechanical features, including the distributions of the contact pressure at both the faying surface and the electrode-workpiece interface, the stress and strain distributions in the weldment and their changes during the RSW process, the deformation of the weldment and the electrode displacement are also calculated.展开更多
基金Project (10902047,51265030) supported by the National Natural Science Foundation of China
文摘Friction stir keyholeless spot welding(FSKSW) using a retractable pin for 1.0 mm thick galvanized mild steel and 3 mm thick AZ31 B magnesium alloy in a lap configuration was investigated.The process variables were optimized in terms of the joint strength.The effects of the stacking sequence on joint formation and the joining mechanism of FSKSW AZ31B-to-mild steel joints were also analyzed.It shows that the process window and joint strength are strongly influenced by the stacking sequence of the workpieces.While the process window is narrow and unstable for FSKSW of a magnesium-to-steel stack-up,a desirable process was established for the steel-to-magnesium stacking sequence,a desirable process and higher strength joint can be got when the steel-to-magnesium stacking sequence.XRD phase and EPMA analyses of the FSKSW joint showed that the intermetallic compounds are formed at the steel-to-magnesium interface,and the element diffusion between the mild steel and AZ31 B magnesium alloy revealed that the joining methods for FSKSW joints is the main mechanical joining along with certain metallurgical bonding.
基金Projects (11202125, 61175038) supported by the National Natural Science Foundation of China
文摘In order to explore the influence of welding parameters and to investigate the Al alloy (AA) nugget formation process, a comprehensive model involving electrical-thermal-mechanical and metallurgical analysis was established to numerically display the resistance spot welding (RSW) process within multiple fields and understand the AA-RSW physics. A multi-disciplinary finite element method (FEM) framework and a empirical sub-model were built to analyze the affecting factors on weld nugget and the underlying nature of welding physics with dynamic simulation procedure. Specifically, a counter-intuitive phenomenon of the resistance time-variation caused by the transient inverse virtual variation (TIVV) effect was highlighted and analyzed on the basis of welding current and temperature distribution simulation. The empirical model describing the TIVV phenomenon was used for modifying the dynamic resistance simulation during the AA spot welding process. The numerical and experimental results show that the proposed multi-field FEM model agrees with the measured AA welding feature, and the modified dynamic resistance model captures the physics of nugget growth and the electrical-thermal behavior under varying welding current and fluctuating heat input.
文摘Keyhole at the end of a weld prepared by friction stir welding(FSW)is one of the major issues that impede the application of FSW.To address this issue,a keyhole filling technique was proposed in this paper,which is based on the principles of resistance spot welding(RSW).A three-phase secondary rectifier resistance spot welder was applied as the experimental instrument for filling the keyhole in the center of friction stir spot weld(FSSW).The test sheet is a 2024-T4 aluminium alloy with a thickness of 6.0mm.The experiments results show that the filled joint strength is improved by 26.12%since the area is increased for the plug in the keyhole.And there are two kinds of dimples in the tensile fracture-equiaxial dimples and long dimples.The filled joint involves the fusion welding zone(FWZ),pressure welding zone(PWZ),melted plug zone(MPZ),and plastic deformation zone(PDZ).The FWZ and the PWZ is the melting bond and diffusion bond between the plug and keyhole,respectively.The MPZ is the center part and the PDZ is upper or lower part of the plug.
基金Scientific Research Fund of Hunan Provincial Education Department(No.15C1240)Innovation platform open fund Project(No.16K080).
文摘This paper studies the friction stir spot welding of AA2024-T3/AA7075-T6 Al alloys in the ambient and underwater environments by clarifying the nugget features,microstructure,fracture and mechanical properties of the joints.The results show that the water-cooling medium exhibits a significant heat absorption capacity in the AA2024-T3/AA7075-T6 welded joint.Nugget features such as stir zone width,circular imprints,average grain sizes,and angular inter-material hooking are reduced by the watercooling effect in the joints.Narrower whitish(intercalated structures)bands are formed in the underwater joints while Mg2Si and Al2CuMg precipitates are formed in the ambient and the underwater welded joints respectively.An increase in tool rotational speed(600e1400 rpm)and plunge depth(0.1 e0.5 mm)increases the tensile-shear force of the welded AA2024-T3/AA7075-T6 joints in both the ambient and underwater environments.The maximum tensile-shear forces of 5900 N and 6700 N were obtained in the ambient and the underwater welds respectively.
文摘Based on the existing component models in the Pspice software package, a combined model for Insulat- ed the Bipolar Transistor (IGBT) is established, in which a non - linear is introduced to represent the parasitic capacitance. Using this model, computerized simulation is conducted for the FB - ZVZCS - PWM soft - ewitching converter,the switching and energy-transferring characteristics of the components are analyzed.The simulation results are testified by experiments.It is proved that by abopting appropriate models,computerized simulation becomes an effective tool for investigation of arc welding inverter power source.
文摘The joining of metal and polymer is an increasingly important method to get lightweight components in the development of manufacturing industry- nowadays. In this artiele, metal and polymer lap joint was achieved by means of resistance spot welding (RSW) and ultrasonic assistance welding (UAW). The joining mechanism of lap joint was analyzed by OM, TEM on microstructure at the interface of lap joints and XPS and IR spectra was discussed based on the following different ones: mechanical-interlocking, diffusion bond and coordination bond. The results showed that it was the combined action that played an important role in the effective joining work. Besides, ultrasonic assistance was used in the study to aid welding process based on its high-frequency ultrasonic vibration, which made joints shaping better and improved tensile strength visibly contrast to joints with the same lower heat input parameters.
文摘An axisymmetric finite element model is developed to simulate the temperature field of resistant spot welding according to the process characters of nugget formation of non equal stainless steel sheets. A simulation method of the interaction of electrical and thermal factors is presented. The spot welding process of nugget formation is simulated using hard and soft welding technique norms. The heating characters of soft and hard norms determine the differences in the process of nugget formation and determine the finally shape and offset of nugget. Experimental verification shows that the model prediction agrees well with the practical.
基金Funded by Key Laboratory of Automobile Materials of Ministry of Education and Department of Materials Science & Engineering,Jilin University
文摘An ultrasonic test of spot welding for stainless steel is conducted. Based on wavelet packet decomposition, the ultrasonic echo signal has been analyzed deeply in time - frequency domain, which can easily distinguish the nugget from the corona bond. The 2D C-scan images produced by ultrasonic C scan which contribute to quantitatively calculate the nugget diameter for the computer are further analyzed. The spot welding nugget diameter can be automatically obtained by image enhancement, edge detection and equivalent diameter algorithm procedure. The ultrasonic detection values in this paper show good agreement with the metallographic measured values. The mean value of normal distribution curve is 0.006 67, and the standard deviation is 0.087 11. Ultrasonic C-scan test based on wavelet packet signal analysis is of high accuracy and stability.
文摘Advanced high strength steel (AHSS) has been widely used in the automobile industry.The resistance spot welding performance of DP980 and Q&P980 steels was studied through comparing the two steels’welding current range,tensile shear strength (TSS),cross tension strength (CTS),weld spots’microhardness,etc.The following conclusions were achieved:It is easy for both DP980 and Q&P980 steels to get a nugget size bigger than 4 mm,they all have welding current ranges exceeding 2 kA and high weld strength.
基金supported by National Natural Science Foundation of China (No.50575159)Science Foundation of Ministry of Education of China (No.106049)+1 种基金Doctoral Foundation of Ministry of Education of China (No.20060056058)and Tianjin Municipal Natural Science Foundation of China (No.06YFJMJC03400).
文摘A novel detection method of support vector machine (SVM) based on fractal dimension of signals is presented. And models of SVM are made based on nugget size defects of spot welding. Classification using these trained SVM models is done to signals of spot welding. It is shown from effect of different SVM models that these models with different inputs. In detection of defects, these models with inputs including sound signal have a high percentage of accuracy, the detection accuracy of these models with inputs including voltage signal will reduce. So the SVM models based on fractal dimensions of sound are some optimal nondestructive detection ones. At last a comparison between SVM detection model and ANNS detection model is researched which indicates that SVM is a more effective measure than Artificial neural networks in detection of nugget size defects during spot welding.
基金This project is supported by Natural Science Foundation of Shanxi Province,China(20051063)the Education Department Science and Technology Development Foundation of Shanxi Province,China(200262)Doctor Research Foundation of Taiyuan University of Science and Technology,Taiyuan,Shanxi Province,China(200271).
文摘Deep cryogenic treatment technology of electrodes is put forward to improve electrode life of resistance spot welding of aluminum alloy LF2. Deep cryogenic treatment makes electrode life for spot welding aluminum alloy improve. The specific resistivity of the deep cryogenic treatment electrodes is tested and experimental results show that specific resistivity is decreased sharply. The temperature field and the influence of deep cryogenic treatment on the electrode tip temperature during spot welding aluminium alloy is studied by numerical simulation method with the software ANSYS. The axisymmetric finite element model of mechanical, thermal and electrical coupled analysis of spot welding process is developed. The numerical simulation results show that the influence of deep cryogenic treatment on electrode tip temperature is very large.
基金The authors would like to thank the National Natural Science Foundation of China(Grant No.51971183)Natural Sciences and Engineering Research Council of Canada(NSERC)+1 种基金Fundamental Research Funds for the Central Universities(XDJK2018B108,SWU119065)Venture and Innovation Support Program for Chongqing Overseas Returnees(CX2018082)in the form of international research collaboration.
文摘Lightweight ZEK100-0 Mg alloy and A16022-T43 Al alloy with an Ag interlayer were joined via ultrasonic spot welding(USW),focusing on the microstructural change and tensile lap shear strength of the welded joints in relation to welding energy.Mg/Al interface was superseded by Mg/Ag and Al/Ag interfaces,and unfavorable Mg门A-intermetallic compound was eliminated.Ag foil was observed to be intact in the nugget center,while it was broken or dissolved at the nugget edge at high welding energy levels.The diffusion layer at the Mg/Ag interface consisted of two distinctive sub-layers:Mg3Ag intermetallic compound adjoining Ag foil,and Mg3Ag-l-Mg eutectic structure adjacent to Mg.Only a thin diffusion layer consisting mainly of Ag3Al occurred al lhe Al/Ag interface.The tensile lap shear strength first increased,reached its peak value,and then decreased with increasing welding energy.The shear strength achieved in the present study was〜31%higher than that of the joint without interlayer.Interfacial failure occurred at all energy levels,with Ag foil particles or fragments being stuck on both Mg and Al sides due to its intense interaction with Mg and Al via accelerated diffusion during USW.The results obtained pave the way for the challenging dissimilar welding between Mg and Al alloys.
基金supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and AUTO21 Network of Centers of Excellence for providing financial supportthe financial support by the Premier’s Research Excellence Award (PREA), NSERC-Discovery Accelerator Supplement (DAS) Award, Automotive Partnership Canada (APC), Canada Foundation for Innovation (CFI), and Ryerson Research Chair (RRC) program
文摘Sound dissimilar lap joints were achieved via ultrasonic spot welding (USW), which is a solid-state joining technique. The addition of Sn interlayer during USW effectively blocked the formation of brittle Al12Mg17 intermetallic compound in the Mg-Al dissimilar joints without interlayer, and led to the presence of a distinctive composite-like Sn and Mg2Sn eutectic structure in both Mg- Al and Mg-high strength low alloy (HSLA) steel joints. The lap shear strength of both types of dissimilar joints with a Sn interlayer was significantly higher than that of the corresponding dissimilar joints without interlayer. Failure during the tensile lap shear tests occurred mainly in the mode of cohesive failure in the Mg- Al dissimilar joints and in the mode of partial cohesive failure and partial nugget pull-out in the Mg-HSLA steel dissimilar joints.
基金[This work was financially supported by the National Natural Science Foundation of China (No. 50175080) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (SRFDP: No. 20030056003).]
文摘The effects of deep cryogenic treatment on mechanical behavior of a Cu-Cr-Zr alloy for electrodes of spot welding were investigated employing Brinell-hardness testing unit, abrasion examination machine, electronic almighty testing machine and X-ray stress analyzer. Tensile fracture surfaces of the alloy were characterized by scanning electronic microscope (SEM) with energy dispersive X-ray spectroscopy (EDS). The results showed that, after deep cryogenic treatment, σb and σ0.2 increased 23 MPa and 21 MPa respectively, the wear rate of the alloy exhibited the trend of decrease with the decreasing temperature and increasing time of deep cryogenic treatment, and the surface residual stress of the alloy was partially eliminated by deep cryogenic treatment.
文摘A visual sensing system was established to monitor the weld pool in laser spot welding. The top-hat and bottom-hat transformation algorithms based on mathematical morphology were used to compensate for non-uniform contrast of weld pool edge. Moreover, the canny edge detector was applied to extract the weld paol profile. The edge detected results show that the morphological operation is obviously superior to the traditional contrast enhancement method. In addition, the combination of dilation and erosion was applied to eliminate the irrelevant edge details, and the smooth weld pool edge was acquired. Based on the image processing technology described above, the dynamic process of weld pool diameter during laser spot welding was obtained.
基金Projects(51875470,51405389) supported by the National Natural Science Foundation of ChinaProject(2018JM5159) supported by the Natural Science Foundation of Shaanxi Province,ChinaProject(2016YFB1100104) supported by the National Key Research and Development Program of China
文摘The AZ31 magnesium alloy with a thickness of 1.8 mm was welded by the probeless friction stir spot welding process without Zn interlayer.The influence of process parameters on joint microstructure and mechanical properties was investigated by using different rotating speeds and dwell time.Microstructure of joints is divided into three regions:stir zone,thermomechanically-affected zone and heat-affected zone.With the increase of rotation speed and dwell time,the depth of stir zone gradually increases,and hook defects extend from the interface of two plates to the surface of the upper plate.The tensile shear strength of joints and two fracture modes(shear fracture and plug fracture)are closely related to hook defects.The maximum tensile shear strength of the joint is 4.22 kN when rotation speed and dwell time are 1180 r/min and 9 s,respectively.Microhardness value and its fluctuation in upper sheet are evidently higher than those of the lower sheet.
基金This project is supported by Municipal Key Science Foundation of Shenyang,China(No.1041020-1-04)Provincial Natural Science Foundation of Liaoning,China(No.20031022).
文摘The multisensor information fusion technology is adopted for real time measuring the four parameters which are connected closely with the weld nugget size(welding current, electrode displacement, dynamic resistance, welding time), thus much more original information is obtained. In this way, the difficulty caused by measuring indirectly weld nugget size can be decreased in spot welding quality control, and the stability of spot welding quality can be improved. According to this method, two-dimensional fuzzy controllers are designed with the information fusion result as input and the thyristor control signal as output. The spot welding experimental results indicate that the spot welding quality intelligent control method based on multiscnsor information fusion technology can compensate the influence caused by variable factors in welding process and ensure the stability of welding quality.
基金This work is supported by Nature Science Foundation of Peo-ple ' s Republic of China ( No.50045019).
文摘Nugget splash during aluminum alloys spot welding has a detrimental effect on weld nugget integrity, strength and durability of the welded joints. This investigation is performed to identify nugget splash from voltage signals because these are easily accessible on-line. In the present work, we propose a novel method based on the wavelet packet transform and its energy spectrum for pattern recognition of splash signal. The result demonstrates that this novel method is more accuracy and a useful way of monitoring the spot welding quality.
文摘Expulsion is an undesired event during resistance spot welding because the weld quality deteriorates. It is the ejection of molten metal from the weld nugget which usually occurs due to applying a high current for a short welding time. Expulsion has a significant impact on the final yield strength of the weld, thus the detection and characterization of expulsion events is significant for the quality assurance of resistance spot welds. In this study, hardness mapping, using a scanning hardness machine, was used as a quality assurance technique for re- sistance spot welding. Hardness tests were conducted on a resistance spot welded sample to prepare a hardness map. The test results showed good correlation between the hardness map and metallographic cross sections. The technique also provided further fundamental understand- ing of the resistance spot welding process, especially regarding the occurrence of expulsion in the nugget.
文摘A two-dimensional axisymmetric finite element model is developed to analyze the transient thermal and mechanical behaviors of the Resistance Spot Welding (RSW) process using commercial software ANSYS. Firstly a direct-coupled electrical-thermal Finite Element Analysis (FEA) is performed to analyze the transient thermal characteristics of the RSW process. Then based on the thermal results a sequential coupled thermo-elastic-plastic analysis is conducted to determine the mechanical features of the RSW process. The thermal history of the whole process and the temperature distribution of the weldment are obtained through the analysis. The mechanical features, including the distributions of the contact pressure at both the faying surface and the electrode-workpiece interface, the stress and strain distributions in the weldment and their changes during the RSW process, the deformation of the weldment and the electrode displacement are also calculated.