Aspect-Based Sentiment Analysis(ABSA)is a fundamental area of research in Natural Language Processing(NLP).Within ABSA,Aspect Sentiment Quad Prediction(ASQP)aims to accurately identify sentiment quadruplets in target ...Aspect-Based Sentiment Analysis(ABSA)is a fundamental area of research in Natural Language Processing(NLP).Within ABSA,Aspect Sentiment Quad Prediction(ASQP)aims to accurately identify sentiment quadruplets in target sentences,including aspect terms,aspect categories,corresponding opinion terms,and sentiment polarity.However,most existing research has focused on English datasets.Consequently,while ASQP has seen significant progress in English,the Chinese ASQP task has remained relatively stagnant.Drawing inspiration from methods applied to English ASQP,we propose Chinese generation templates and employ prompt-based instruction learning to enhance the model’s understanding of the task,ultimately improving ASQP performance in the Chinese context.Ultimately,under the same pre-training model configuration,our approach achieved a 5.79%improvement in the F1 score compared to the previously leading method.Furthermore,when utilizing a larger model with reduced training parameters,the F1 score demonstrated an 8.14%enhancement.Additionally,we suggest a novel evaluation metric based on the characteristics of generative models,better-reflecting model generalization.Experimental results validate the effectiveness of our approach.展开更多
In the context of the accelerated pace of daily life and the development of e-commerce,online shopping is a mainstreamway for consumers to access products and services.To understand their emotional expressions in faci...In the context of the accelerated pace of daily life and the development of e-commerce,online shopping is a mainstreamway for consumers to access products and services.To understand their emotional expressions in facing different shopping experience scenarios,this paper presents a sentiment analysis method that combines the ecommerce reviewkeyword-generated imagewith a hybrid machine learning-basedmodel,inwhich theWord2Vec-TextRank is used to extract keywords that act as the inputs for generating the related images by generative Artificial Intelligence(AI).Subsequently,a hybrid Convolutional Neural Network and Support Vector Machine(CNNSVM)model is applied for sentiment classification of those keyword-generated images.For method validation,the data randomly comprised of 5000 reviews from Amazon have been analyzed.With superior keyword extraction capability,the proposedmethod achieves impressive results on sentiment classification with a remarkable accuracy of up to 97.13%.Such performance demonstrates its advantages by using the text-to-image approach,providing a unique perspective for sentiment analysis in the e-commerce review data compared to the existing works.Thus,the proposed method enhances the reliability and insights of customer feedback surveys,which would also establish a novel direction in similar cases,such as social media monitoring and market trend research.展开更多
Although sentiment analysis is pivotal to understanding user preferences,existing models face significant challenges in handling context-dependent sentiments,sarcasm,and nuanced emotions.This study addresses these cha...Although sentiment analysis is pivotal to understanding user preferences,existing models face significant challenges in handling context-dependent sentiments,sarcasm,and nuanced emotions.This study addresses these challenges by integrating ontology-based methods with deep learning models,thereby enhancing sentiment analysis accuracy in complex domains such as film reviews and restaurant feedback.The framework comprises explicit topic recognition,followed by implicit topic identification to mitigate topic interference in subsequent sentiment analysis.In the context of sentiment analysis,we develop an expanded sentiment lexicon based on domainspecific corpora by leveraging techniques such as word-frequency analysis and word embedding.Furthermore,we introduce a sentiment recognition method based on both ontology-derived sentiment features and sentiment lexicons.We evaluate the performance of our system using a dataset of 10,500 restaurant reviews,focusing on sentiment classification accuracy.The incorporation of specialized lexicons and ontology structures enables the framework to discern subtle sentiment variations and context-specific expressions,thereby improving the overall sentiment-analysis performance.Experimental results demonstrate that the integration of ontology-based methods and deep learning models significantly improves sentiment analysis accuracy.展开更多
Modern technological advancements have made social media an essential component of daily life.Social media allow individuals to share thoughts,emotions,and ideas.Sentiment analysis plays the function of evaluating whe...Modern technological advancements have made social media an essential component of daily life.Social media allow individuals to share thoughts,emotions,and ideas.Sentiment analysis plays the function of evaluating whether the sentiment of the text is positive,negative,neutral,or any other personal emotion to understand the sentiment context of the text.Sentiment analysis is essential in business and society because it impacts strategic decision-making.Sentiment analysis involves challenges due to lexical variation,an unlabeled dataset,and text distance correlations.The execution time increases due to the sequential processing of the sequence models.However,the calculation times for the Transformer models are reduced because of the parallel processing.This study uses a hybrid deep learning strategy to combine the strengths of the Transformer and Sequence models while ignoring their limitations.In particular,the proposed model integrates the Decoding-enhanced with Bidirectional Encoder Representations from Transformers(BERT)attention(DeBERTa)and the Gated Recurrent Unit(GRU)for sentiment analysis.Using the Decoding-enhanced BERT technique,the words are mapped into a compact,semantic word embedding space,and the Gated Recurrent Unit model can capture the distance contextual semantics correctly.The proposed hybrid model achieves F1-scores of 97%on the Twitter Large Language Model(LLM)dataset,which is much higher than the performance of new techniques.展开更多
The task of cross-target stance detection faces significant challenges due to the lack of additional background information in emerging knowledge domains and the colloquial nature of language patterns.Traditional stan...The task of cross-target stance detection faces significant challenges due to the lack of additional background information in emerging knowledge domains and the colloquial nature of language patterns.Traditional stance detection methods often struggle with understanding limited context and have insufficient generalization across diverse sentiments and semantic structures.This paper focuses on effectively mining and utilizing sentimentsemantics knowledge for stance knowledge transfer and proposes a sentiment-aware hierarchical attention network(SentiHAN)for cross-target stance detection.SentiHAN introduces an improved hierarchical attention network designed to maximize the use of high-level representations of targets and texts at various fine-grain levels.This model integrates phrase-level combinatorial sentiment knowledge to effectively bridge the knowledge gap between known and unknown targets.By doing so,it enables a comprehensive understanding of stance representations for unknown targets across different sentiments and semantic structures.The model’s ability to leverage sentimentsemantics knowledge enhances its performance in detecting stances that may not be directly observable from the immediate context.Extensive experimental results indicate that SentiHAN significantly outperforms existing benchmark methods in terms of both accuracy and robustness.Moreover,the paper employs ablation studies and visualization techniques to explore the intricate relationship between sentiment and stance.These analyses further confirm the effectiveness of sentence-level combinatorial sentiment knowledge in improving stance detection capabilities.展开更多
The present study examines the impact of short-term public opinion sentiment on the secondary market,with a focus on the potential for such sentiment to cause dramatic stock price fluctuations and increase investment ...The present study examines the impact of short-term public opinion sentiment on the secondary market,with a focus on the potential for such sentiment to cause dramatic stock price fluctuations and increase investment risk.The quantification of investment sentiment indicators and the persistent analysis of their impact has been a complex and significant area of research.In this paper,a structured multi-head attention stock index prediction method based adaptive public opinion sentiment vector is proposed.The proposedmethod utilizes an innovative approach to transform numerous investor comments on social platforms over time into public opinion sentiment vectors expressing complex sentiments.It then analyzes the continuous impact of these vectors on the market through the use of aggregating techniques and public opinion data via a structured multi-head attention mechanism.The experimental results demonstrate that the public opinion sentiment vector can provide more comprehensive feedback on market sentiment than traditional sentiment polarity analysis.Furthermore,the multi-head attention mechanism is shown to improve prediction accuracy through attention convergence on each type of input information separately.Themean absolute percentage error(MAPE)of the proposedmethod is 0.463%,a reduction of 0.294% compared to the benchmark attention algorithm.Additionally,the market backtesting results indicate that the return was 24.560%,an improvement of 8.202% compared to the benchmark algorithm.These results suggest that themarket trading strategy based on thismethod has the potential to improve trading profits.展开更多
Sentiment analysis, the meta field of Natural Language Processing (NLP), attempts to analyze and identify thesentiments in the opinionated text data. People share their judgments, reactions, and feedback on the intern...Sentiment analysis, the meta field of Natural Language Processing (NLP), attempts to analyze and identify thesentiments in the opinionated text data. People share their judgments, reactions, and feedback on the internetusing various languages. Urdu is one of them, and it is frequently used worldwide. Urdu-speaking people prefer tocommunicate on social media in Roman Urdu (RU), an English scripting style with the Urdu language dialect.Researchers have developed versatile lexical resources for features-rich comprehensive languages, but limitedlinguistic resources are available to facilitate the sentiment classification of Roman Urdu. This effort encompassesextracting subjective expressions in Roman Urdu and determining the implied opinionated text polarity. Theprimary sources of the dataset are Daraz (an e-commerce platform), Google Maps, and the manual effort. Thecontributions of this study include a Bilingual Roman Urdu Language Detector (BRULD) and a Roman UrduSpelling Checker (RUSC). These integrated modules accept the user input, detect the text language, correct thespellings, categorize the sentiments, and return the input sentence’s orientation with a sentiment intensity score.The developed system gains strength with each input experience gradually. The results show that the languagedetector gives an accuracy of 97.1% on a close domain dataset, with an overall sentiment classification accuracy of94.3%.展开更多
As the pivotal green space,urban parks play an important role in urban residents’daily activities.Thy can not only bring people physical health,but also can be more likely to elicit positive sentiment to those who vi...As the pivotal green space,urban parks play an important role in urban residents’daily activities.Thy can not only bring people physical health,but also can be more likely to elicit positive sentiment to those who visit them.Recently,social media big data has provided new data sources for sentiment analysis.However,there was limited researches that explored the connection between urban parks and individual’s sentiments.Therefore,this study firstly employed a pre-trained language model(BERT,Bidirectional Encoder Representations from Transformers)to calculate sentiment scores based on social media data.Secondly,this study analysed the relationship between urban parks and individual’s sentiment from both spatial and temporal perspectives.Finally,by utilizing structural equation model(SEM),we identified 13 factors and analyzed its degree of the influence.The research findings are listed as below:①It confirmed that individuals generally experienced positive sentiment with high sentiment scores in the majority of urban parks;②The urban park type showed an influence on sentiment scores.In this study,higher sentiment scores observed in Eco-parks,comprehensive parks,and historical parks;③The urban parks level showed low impact on sentiment scores.With distinctions observed mainly at level-3 and level-4;④Compared to internal factors in parks,the external infrastructure surround them exerted more significant impact on sentiment scores.For instance,number of bus and subway stations around urban parks led to higher sentiment scores,while scenic spots and restaurants had inverse result.This study provided a novel method to quantify the services of various urban parks,which can be served as inspiration for similar studies in other cities and countries,enhancing their park planning and management strategies.展开更多
Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and sha...Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and share such multimodal data.However,due to professional discrepancies among annotators and lax quality control,noisy labels might be introduced.Recent research suggests that deep neural networks(DNNs)will overfit noisy labels,leading to the poor performance of the DNNs.To address this challenging problem,we present a Multimodal Robust Meta Learning framework(MRML)for multimodal sentiment analysis to resist noisy labels and correlate distinct modalities simultaneously.Specifically,we propose a two-layer fusion net to deeply fuse different modalities and improve the quality of the multimodal data features for label correction and network training.Besides,a multiple meta-learner(label corrector)strategy is proposed to enhance the label correction approach and prevent models from overfitting to noisy labels.We conducted experiments on three popular multimodal datasets to verify the superiority of ourmethod by comparing it with four baselines.展开更多
This study presents results from sentiment analysis of Dynamic message sign (DMS) message content, focusing on messages that include numbers of road fatalities. As a traffic management tool, DMS plays a role in influe...This study presents results from sentiment analysis of Dynamic message sign (DMS) message content, focusing on messages that include numbers of road fatalities. As a traffic management tool, DMS plays a role in influencing driver behavior and assisting transportation agencies in achieving safe and efficient traffic movement. However, the psychological and behavioral effects of displaying fatality numbers on DMS remain poorly understood;hence, it is important to know the potential impacts of displaying such messages. The Iowa Department of Transportation displays the number of fatalities on a first screen, followed by a supplemental message hoping to promote safe driving;an example is “19 TRAFFIC DEATHS THIS YEAR IF YOU HAVE A SUPER BOWL DON’T DRIVE HIGH.” We employ natural language processing to decode the sentiment and undertone of the supplementary message and investigate how they influence driving speeds. According to the results of a mixed effect model, drivers reduced speeds marginally upon encountering DMS fatality text with a positive sentiment with a neutral undertone. This category had the largest associated amount of speed reduction, while messages with negative sentiment with a negative undertone had the second largest amount of speed reduction, greater than other combinations, including positive sentiment with a positive undertone.展开更多
In recent years,deep learning methods have developed rapidly and found application in many fields,including natural language processing.In the field of aspect-level sentiment analysis,deep learning methods can also gr...In recent years,deep learning methods have developed rapidly and found application in many fields,including natural language processing.In the field of aspect-level sentiment analysis,deep learning methods can also greatly improve the performance of models.However,previous studies did not take into account the relationship between user feature extraction and contextual terms.To address this issue,we use data feature extraction and deep learning combined to develop an aspect-level sentiment analysis method.To be specific,we design user comment feature extraction(UCFE)to distill salient features from users’historical comments and transform them into representative user feature vectors.Then,the aspect-sentence graph convolutional neural network(ASGCN)is used to incorporate innovative techniques for calculating adjacency matrices;meanwhile,ASGCN emphasizes capturing nuanced semantics within relationships among aspect words and syntactic dependency types.Afterward,three embedding methods are devised to embed the user feature vector into the ASGCN model.The empirical validations verify the effectiveness of these models,consistently surpassing conventional benchmarks and reaffirming the indispensable role of deep learning in advancing sentiment analysis methodologies.展开更多
Sentiment analysis, a crucial task in discerning emotional tones within the text, plays a pivotal role in understandingpublic opinion and user sentiment across diverse languages.While numerous scholars conduct sentime...Sentiment analysis, a crucial task in discerning emotional tones within the text, plays a pivotal role in understandingpublic opinion and user sentiment across diverse languages.While numerous scholars conduct sentiment analysisin widely spoken languages such as English, Chinese, Arabic, Roman Arabic, and more, we come to grapplingwith resource-poor languages like Urdu literature which becomes a challenge. Urdu is a uniquely crafted language,characterized by a script that amalgamates elements from diverse languages, including Arabic, Parsi, Pashtu,Turkish, Punjabi, Saraiki, and more. As Urdu literature, characterized by distinct character sets and linguisticfeatures, presents an additional hurdle due to the lack of accessible datasets, rendering sentiment analysis aformidable undertaking. The limited availability of resources has fueled increased interest among researchers,prompting a deeper exploration into Urdu sentiment analysis. This research is dedicated to Urdu languagesentiment analysis, employing sophisticated deep learning models on an extensive dataset categorized into fivelabels: Positive, Negative, Neutral, Mixed, and Ambiguous. The primary objective is to discern sentiments andemotions within the Urdu language, despite the absence of well-curated datasets. To tackle this challenge, theinitial step involves the creation of a comprehensive Urdu dataset by aggregating data from various sources such asnewspapers, articles, and socialmedia comments. Subsequent to this data collection, a thorough process of cleaningand preprocessing is implemented to ensure the quality of the data. The study leverages two well-known deeplearningmodels, namely Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN), for bothtraining and evaluating sentiment analysis performance. Additionally, the study explores hyperparameter tuning tooptimize the models’ efficacy. Evaluation metrics such as precision, recall, and the F1-score are employed to assessthe effectiveness of the models. The research findings reveal that RNN surpasses CNN in Urdu sentiment analysis,gaining a significantly higher accuracy rate of 91%. This result accentuates the exceptional performance of RNN,solidifying its status as a compelling option for conducting sentiment analysis tasks in the Urdu language.展开更多
Sentiment analysis is a fine‐grained analysis task that aims to identify the sentiment polarity of a specified sentence.Existing methods in Chinese sentiment analysis tasks only consider sentiment features from a sin...Sentiment analysis is a fine‐grained analysis task that aims to identify the sentiment polarity of a specified sentence.Existing methods in Chinese sentiment analysis tasks only consider sentiment features from a single pole and scale and thus cannot fully exploit and utilise sentiment feature information,making their performance less than ideal.To resolve the problem,the authors propose a new method,GP‐FMLNet,that integrates both glyph and phonetic information and design a novel feature matrix learning process for phonetic features with which to model words that have the same pinyin information but different glyph information.Our method solves the problem of misspelling words influencing sentiment polarity prediction results.Specifically,the authors iteratively mine character,glyph,and pinyin features from the input comments sentences.Then,the authors use soft attention and matrix compound modules to model the phonetic features,which empowers their model to keep on zeroing in on the dynamic‐setting words in various positions and to dispense with the impacts of the deceptive‐setting ones.Ex-periments on six public datasets prove that the proposed model fully utilises the glyph and phonetic information and improves on the performance of existing Chinese senti-ment analysis algorithms.展开更多
This study undertakes a thorough analysis of the sentiment within the r/Corona-virus subreddit community regarding COVID-19 vaccines on Reddit. We meticulously collected and processed 34,768 comments, spanning from No...This study undertakes a thorough analysis of the sentiment within the r/Corona-virus subreddit community regarding COVID-19 vaccines on Reddit. We meticulously collected and processed 34,768 comments, spanning from November 20, 2020, to January 17, 2021, using sentiment calculation methods such as TextBlob and Twitter-RoBERTa-Base-sentiment to categorize comments into positive, negative, or neutral sentiments. The methodology involved the use of Count Vectorizer as a vectorization technique and the implementation of advanced ensemble algorithms like XGBoost and Random Forest, achieving an accuracy of approximately 80%. Furthermore, through the Dirichlet latent allocation, we identified 23 distinct reasons for vaccine distrust among negative comments. These findings are crucial for understanding the community’s attitudes towards vaccination and can guide targeted public health messaging. Our study not only provides insights into public opinion during a critical health crisis, but also demonstrates the effectiveness of combining natural language processing tools and ensemble algorithms in sentiment analysis.展开更多
Aiming at the problem that existing models in aspect-level sentiment analysis cannot fully and effectively utilize sentence semantic and syntactic structure information, this paper proposes a graph neural network-base...Aiming at the problem that existing models in aspect-level sentiment analysis cannot fully and effectively utilize sentence semantic and syntactic structure information, this paper proposes a graph neural network-based aspect-level sentiment classification model. Self-attention, aspectual word multi-head attention and dependent syntactic relations are fused and the node representations are enhanced with graph convolutional networks to enable the model to fully learn the global semantic and syntactic structural information of sentences. Experimental results show that the model performs well on three public benchmark datasets Rest14, Lap14, and Twitter, improving the accuracy of sentiment classification.展开更多
Sentiment analysis plays a vital role in understanding public opinions and sentiments toward various topics.In recent years,the rise of social media platforms(SMPs)has provided a rich source of data for analyzing publ...Sentiment analysis plays a vital role in understanding public opinions and sentiments toward various topics.In recent years,the rise of social media platforms(SMPs)has provided a rich source of data for analyzing public opinions,particularly in the context of election-related conversations.Nevertheless,sentiment analysis of electionrelated tweets presents unique challenges due to the complex language used,including figurative expressions,sarcasm,and the spread of misinformation.To address these challenges,this paper proposes Election-focused Bidirectional Encoder Representations from Transformers(ElecBERT),a new model for sentiment analysis in the context of election-related tweets.Election-related tweets pose unique challenges for sentiment analysis due to their complex language,sarcasm,andmisinformation.ElecBERT is based on the Bidirectional Encoder Representations from Transformers(BERT)language model and is fine-tuned on two datasets:Election-Related Sentiment-Annotated Tweets(ElecSent)-Multi-Languages,containing 5.31 million labeled tweets in multiple languages,and ElecSent-English,containing 4.75million labeled tweets in English.Themodel outperforms othermachine learning models such as Support Vector Machines(SVM),Na飗e Bayes(NB),and eXtreme Gradient Boosting(XGBoost),with an accuracy of 0.9905 and F1-score of 0.9816 on ElecSent-Multi-Languages,and an accuracy of 0.9930 and F1-score of 0.9899 on ElecSent-English.The performance of differentmodels was compared using the 2020 United States(US)Presidential Election as a case study.The ElecBERT-English and ElecBERT-Multi-Languages models outperformed BERTweet,with the ElecBERT-English model achieving aMean Absolute Error(MAE)of 6.13.This paper presents a valuable contribution to sentiment analysis in the context of election-related tweets,with potential applications in political analysis,social media management,and policymaking.展开更多
The use of Amazon Web Services is growing rapidly as more users are adopting the technology.It has various functionalities that can be used by large corporates and individuals as well.Sentiment analysis is used to bui...The use of Amazon Web Services is growing rapidly as more users are adopting the technology.It has various functionalities that can be used by large corporates and individuals as well.Sentiment analysis is used to build an intelligent system that can study the opinions of the people and help to classify those related emotions.In this research work,sentiment analysis is performed on the AWS Elastic Compute Cloud(EC2)through Twitter data.The data is managed to the EC2 by using elastic load balancing.The collected data is subjected to preprocessing approaches to clean the data,and then machine learning-based logistic regression is employed to categorize the sentiments into positive and negative sentiments.High accuracy of 94.17%is obtained through the proposed machine learning model which is higher than the other models that are developed using the existing algorithms.展开更多
Applied linguistics is an interdisciplinary domain which identifies,investigates,and offers solutions to language-related real-life problems.The new coronavirus disease,otherwise known as Coronavirus disease(COVID-19)...Applied linguistics is an interdisciplinary domain which identifies,investigates,and offers solutions to language-related real-life problems.The new coronavirus disease,otherwise known as Coronavirus disease(COVID-19),has severely affected the everyday life of people all over the world.Specifically,since there is insufficient access to vaccines and no straight or reliable treatment for coronavirus infection,the country has initiated the appropriate preventive measures(like lockdown,physical separation,and masking)for combating this extremely transmittable disease.So,individuals spent more time on online social media platforms(i.e.,Twitter,Facebook,Instagram,LinkedIn,and Reddit)and expressed their thoughts and feelings about coronavirus infection.Twitter has become one of the popular social media platforms and allows anyone to post tweets.This study proposes a sine cosine optimization with bidirectional gated recurrent unit-based senti-ment analysis(SCOBGRU-SA)on COVID-19 tweets.The SCOBGRU-SA technique aimed to detect and classify the various sentiments in Twitter data during the COVID-19 pandemic.The SCOBGRU-SA technique follows data pre-processing and the Fast-Text word embedding process to accomplish this.Moreover,the BGRU model is utilized to recognise and classify sen-timents present in the tweets.Furthermore,the SCO algorithm is exploited for tuning the BGRU method’s hyperparameter,which helps attain improved classification performance.The experimental validation of the SCOBGRU-SA technique takes place using a benchmark dataset,and the results signify its promising performance compared to other DL models.展开更多
The public is increasingly using social media platforms such as Twitter and Facebook to express their views on a variety of topics.As a result,social media has emerged as the most effective and largest open source for...The public is increasingly using social media platforms such as Twitter and Facebook to express their views on a variety of topics.As a result,social media has emerged as the most effective and largest open source for obtaining public opinion.Single node computational methods are inefficient for sentiment analysis on such large datasets.Supercomputers or parallel or distributed proces-sing are two options for dealing with such large amounts of data.Most parallel programming frameworks,such as MPI(Message Processing Interface),are dif-ficult to use and scale in environments where supercomputers are expensive.Using the Apache Spark Parallel Model,this proposed work presents a scalable system for sentiment analysis on Twitter.A Spark-based Naive Bayes training technique is suggested for this purpose;unlike prior research,this algorithm does not need any disk access.Millions of tweets have been classified using the trained model.Experiments with various-sized clusters reveal that the suggested strategy is extremely scalable and cost-effective for larger data sets.It is nearly 12 times quicker than the Map Reduce-based model and nearly 21 times faster than the Naive Bayes Classifier in Apache Mahout.To evaluate the framework’s scalabil-ity,we gathered a large training corpus from Twitter.The accuracy of the classi-fier trained with this new dataset was more than 80%.展开更多
Sentiment analysis(SA)is the procedure of recognizing the emotions related to the data that exist in social networking.The existence of sarcasm in tex-tual data is a major challenge in the efficiency of the SA.Earlier...Sentiment analysis(SA)is the procedure of recognizing the emotions related to the data that exist in social networking.The existence of sarcasm in tex-tual data is a major challenge in the efficiency of the SA.Earlier works on sarcasm detection on text utilize lexical as well as pragmatic cues namely interjection,punctuations,and sentiment shift that are vital indicators of sarcasm.With the advent of deep-learning,recent works,leveraging neural networks in learning lexical and contextual features,removing the need for handcrafted feature.In this aspect,this study designs a deep learning with natural language processing enabled SA(DLNLP-SA)technique for sarcasm classification.The proposed DLNLP-SA technique aims to detect and classify the occurrence of sarcasm in the input data.Besides,the DLNLP-SA technique holds various sub-processes namely preprocessing,feature vector conversion,and classification.Initially,the pre-processing is performed in diverse ways such as single character removal,multi-spaces removal,URL removal,stopword removal,and tokenization.Secondly,the transformation of feature vectors takes place using the N-gram feature vector technique.Finally,mayfly optimization(MFO)with multi-head self-attention based gated recurrent unit(MHSA-GRU)model is employed for the detection and classification of sarcasm.To verify the enhanced outcomes of the DLNLP-SA model,a comprehensive experimental investigation is performed on the News Headlines Dataset from Kaggle Repository and the results signified the supremacy over the existing approaches.展开更多
基金supported by the National Key Research and Development Program(Nos.2021YFF0901705,2021YFF0901700)the State Key Laboratory of Media Convergence and Communication,Communication University of China+1 种基金the Fundamental Research Funds for the Central Universitiesthe High-Quality and Cutting-Edge Disciplines Construction Project for Universities in Beijing(Internet Information,Communication University of China).
文摘Aspect-Based Sentiment Analysis(ABSA)is a fundamental area of research in Natural Language Processing(NLP).Within ABSA,Aspect Sentiment Quad Prediction(ASQP)aims to accurately identify sentiment quadruplets in target sentences,including aspect terms,aspect categories,corresponding opinion terms,and sentiment polarity.However,most existing research has focused on English datasets.Consequently,while ASQP has seen significant progress in English,the Chinese ASQP task has remained relatively stagnant.Drawing inspiration from methods applied to English ASQP,we propose Chinese generation templates and employ prompt-based instruction learning to enhance the model’s understanding of the task,ultimately improving ASQP performance in the Chinese context.Ultimately,under the same pre-training model configuration,our approach achieved a 5.79%improvement in the F1 score compared to the previously leading method.Furthermore,when utilizing a larger model with reduced training parameters,the F1 score demonstrated an 8.14%enhancement.Additionally,we suggest a novel evaluation metric based on the characteristics of generative models,better-reflecting model generalization.Experimental results validate the effectiveness of our approach.
基金supported in part by the Guangzhou Science and Technology Plan Project under Grants 2024B03J1361,2023B03J1327,and 2023A04J0361in part by the Open Fund Project of Hubei Province Key Laboratory of Occupational Hazard Identification and Control under Grant OHIC2023Y10+3 种基金in part by the Guangdong Province Ordinary Colleges and Universities Young Innovative Talents Project under Grant 2023KQNCX036in part by the Special Fund for Science and Technology Innovation Strategy of Guangdong Province(Climbing Plan)under Grant pdjh2024a226in part by the Key Discipline Improvement Project of Guangdong Province under Grant 2022ZDJS015in part by theResearch Fund of Guangdong Polytechnic Normal University under Grants 22GPNUZDJS17 and 2022SDKYA015.
文摘In the context of the accelerated pace of daily life and the development of e-commerce,online shopping is a mainstreamway for consumers to access products and services.To understand their emotional expressions in facing different shopping experience scenarios,this paper presents a sentiment analysis method that combines the ecommerce reviewkeyword-generated imagewith a hybrid machine learning-basedmodel,inwhich theWord2Vec-TextRank is used to extract keywords that act as the inputs for generating the related images by generative Artificial Intelligence(AI).Subsequently,a hybrid Convolutional Neural Network and Support Vector Machine(CNNSVM)model is applied for sentiment classification of those keyword-generated images.For method validation,the data randomly comprised of 5000 reviews from Amazon have been analyzed.With superior keyword extraction capability,the proposedmethod achieves impressive results on sentiment classification with a remarkable accuracy of up to 97.13%.Such performance demonstrates its advantages by using the text-to-image approach,providing a unique perspective for sentiment analysis in the e-commerce review data compared to the existing works.Thus,the proposed method enhances the reliability and insights of customer feedback surveys,which would also establish a novel direction in similar cases,such as social media monitoring and market trend research.
基金supported by the BK21 FOUR Program of the National Research Foundation of Korea funded by the Ministry of Education(NRF5199991014091)Seok-Won Lee’s work was supported by Institute of Information&Communications Technology Planning&Evaluation(IITP)under the Artificial Intelligence Convergence Innovation Human Resources Development(IITP-2024-RS-2023-00255968)grant funded by the Korea government(MSIT).
文摘Although sentiment analysis is pivotal to understanding user preferences,existing models face significant challenges in handling context-dependent sentiments,sarcasm,and nuanced emotions.This study addresses these challenges by integrating ontology-based methods with deep learning models,thereby enhancing sentiment analysis accuracy in complex domains such as film reviews and restaurant feedback.The framework comprises explicit topic recognition,followed by implicit topic identification to mitigate topic interference in subsequent sentiment analysis.In the context of sentiment analysis,we develop an expanded sentiment lexicon based on domainspecific corpora by leveraging techniques such as word-frequency analysis and word embedding.Furthermore,we introduce a sentiment recognition method based on both ontology-derived sentiment features and sentiment lexicons.We evaluate the performance of our system using a dataset of 10,500 restaurant reviews,focusing on sentiment classification accuracy.The incorporation of specialized lexicons and ontology structures enables the framework to discern subtle sentiment variations and context-specific expressions,thereby improving the overall sentiment-analysis performance.Experimental results demonstrate that the integration of ontology-based methods and deep learning models significantly improves sentiment analysis accuracy.
文摘Modern technological advancements have made social media an essential component of daily life.Social media allow individuals to share thoughts,emotions,and ideas.Sentiment analysis plays the function of evaluating whether the sentiment of the text is positive,negative,neutral,or any other personal emotion to understand the sentiment context of the text.Sentiment analysis is essential in business and society because it impacts strategic decision-making.Sentiment analysis involves challenges due to lexical variation,an unlabeled dataset,and text distance correlations.The execution time increases due to the sequential processing of the sequence models.However,the calculation times for the Transformer models are reduced because of the parallel processing.This study uses a hybrid deep learning strategy to combine the strengths of the Transformer and Sequence models while ignoring their limitations.In particular,the proposed model integrates the Decoding-enhanced with Bidirectional Encoder Representations from Transformers(BERT)attention(DeBERTa)and the Gated Recurrent Unit(GRU)for sentiment analysis.Using the Decoding-enhanced BERT technique,the words are mapped into a compact,semantic word embedding space,and the Gated Recurrent Unit model can capture the distance contextual semantics correctly.The proposed hybrid model achieves F1-scores of 97%on the Twitter Large Language Model(LLM)dataset,which is much higher than the performance of new techniques.
基金supported by the National Social Science Fund of China(20BXW101)。
文摘The task of cross-target stance detection faces significant challenges due to the lack of additional background information in emerging knowledge domains and the colloquial nature of language patterns.Traditional stance detection methods often struggle with understanding limited context and have insufficient generalization across diverse sentiments and semantic structures.This paper focuses on effectively mining and utilizing sentimentsemantics knowledge for stance knowledge transfer and proposes a sentiment-aware hierarchical attention network(SentiHAN)for cross-target stance detection.SentiHAN introduces an improved hierarchical attention network designed to maximize the use of high-level representations of targets and texts at various fine-grain levels.This model integrates phrase-level combinatorial sentiment knowledge to effectively bridge the knowledge gap between known and unknown targets.By doing so,it enables a comprehensive understanding of stance representations for unknown targets across different sentiments and semantic structures.The model’s ability to leverage sentimentsemantics knowledge enhances its performance in detecting stances that may not be directly observable from the immediate context.Extensive experimental results indicate that SentiHAN significantly outperforms existing benchmark methods in terms of both accuracy and robustness.Moreover,the paper employs ablation studies and visualization techniques to explore the intricate relationship between sentiment and stance.These analyses further confirm the effectiveness of sentence-level combinatorial sentiment knowledge in improving stance detection capabilities.
基金funded by the Major Humanities and Social Sciences Research Projects in Zhejiang higher education institutions,grant number 2023QN082,awarded to Cheng ZhaoThe National Natural Science Foundation of China also provided funding,grant number 61902349,awarded to Cheng Zhao.
文摘The present study examines the impact of short-term public opinion sentiment on the secondary market,with a focus on the potential for such sentiment to cause dramatic stock price fluctuations and increase investment risk.The quantification of investment sentiment indicators and the persistent analysis of their impact has been a complex and significant area of research.In this paper,a structured multi-head attention stock index prediction method based adaptive public opinion sentiment vector is proposed.The proposedmethod utilizes an innovative approach to transform numerous investor comments on social platforms over time into public opinion sentiment vectors expressing complex sentiments.It then analyzes the continuous impact of these vectors on the market through the use of aggregating techniques and public opinion data via a structured multi-head attention mechanism.The experimental results demonstrate that the public opinion sentiment vector can provide more comprehensive feedback on market sentiment than traditional sentiment polarity analysis.Furthermore,the multi-head attention mechanism is shown to improve prediction accuracy through attention convergence on each type of input information separately.Themean absolute percentage error(MAPE)of the proposedmethod is 0.463%,a reduction of 0.294% compared to the benchmark attention algorithm.Additionally,the market backtesting results indicate that the return was 24.560%,an improvement of 8.202% compared to the benchmark algorithm.These results suggest that themarket trading strategy based on thismethod has the potential to improve trading profits.
文摘Sentiment analysis, the meta field of Natural Language Processing (NLP), attempts to analyze and identify thesentiments in the opinionated text data. People share their judgments, reactions, and feedback on the internetusing various languages. Urdu is one of them, and it is frequently used worldwide. Urdu-speaking people prefer tocommunicate on social media in Roman Urdu (RU), an English scripting style with the Urdu language dialect.Researchers have developed versatile lexical resources for features-rich comprehensive languages, but limitedlinguistic resources are available to facilitate the sentiment classification of Roman Urdu. This effort encompassesextracting subjective expressions in Roman Urdu and determining the implied opinionated text polarity. Theprimary sources of the dataset are Daraz (an e-commerce platform), Google Maps, and the manual effort. Thecontributions of this study include a Bilingual Roman Urdu Language Detector (BRULD) and a Roman UrduSpelling Checker (RUSC). These integrated modules accept the user input, detect the text language, correct thespellings, categorize the sentiments, and return the input sentence’s orientation with a sentiment intensity score.The developed system gains strength with each input experience gradually. The results show that the languagedetector gives an accuracy of 97.1% on a close domain dataset, with an overall sentiment classification accuracy of94.3%.
基金R&D Program of Beijing Municipal Education Commission(No.KM202211417015)Academic Research Projects of Beijing Union University(No.ZK10202209)+1 种基金The team-building subsidy of“Xuezhi Professorship”of the College of Applied Arts and Science of Beijing Union University(No.BUUCAS-XZJSTD-2024005)Academic Research Projects of Beijing Union University(No.ZKZD202305).
文摘As the pivotal green space,urban parks play an important role in urban residents’daily activities.Thy can not only bring people physical health,but also can be more likely to elicit positive sentiment to those who visit them.Recently,social media big data has provided new data sources for sentiment analysis.However,there was limited researches that explored the connection between urban parks and individual’s sentiments.Therefore,this study firstly employed a pre-trained language model(BERT,Bidirectional Encoder Representations from Transformers)to calculate sentiment scores based on social media data.Secondly,this study analysed the relationship between urban parks and individual’s sentiment from both spatial and temporal perspectives.Finally,by utilizing structural equation model(SEM),we identified 13 factors and analyzed its degree of the influence.The research findings are listed as below:①It confirmed that individuals generally experienced positive sentiment with high sentiment scores in the majority of urban parks;②The urban park type showed an influence on sentiment scores.In this study,higher sentiment scores observed in Eco-parks,comprehensive parks,and historical parks;③The urban parks level showed low impact on sentiment scores.With distinctions observed mainly at level-3 and level-4;④Compared to internal factors in parks,the external infrastructure surround them exerted more significant impact on sentiment scores.For instance,number of bus and subway stations around urban parks led to higher sentiment scores,while scenic spots and restaurants had inverse result.This study provided a novel method to quantify the services of various urban parks,which can be served as inspiration for similar studies in other cities and countries,enhancing their park planning and management strategies.
基金supported by STI 2030-Major Projects 2021ZD0200400National Natural Science Foundation of China(62276233 and 62072405)Key Research Project of Zhejiang Province(2023C01048).
文摘Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and share such multimodal data.However,due to professional discrepancies among annotators and lax quality control,noisy labels might be introduced.Recent research suggests that deep neural networks(DNNs)will overfit noisy labels,leading to the poor performance of the DNNs.To address this challenging problem,we present a Multimodal Robust Meta Learning framework(MRML)for multimodal sentiment analysis to resist noisy labels and correlate distinct modalities simultaneously.Specifically,we propose a two-layer fusion net to deeply fuse different modalities and improve the quality of the multimodal data features for label correction and network training.Besides,a multiple meta-learner(label corrector)strategy is proposed to enhance the label correction approach and prevent models from overfitting to noisy labels.We conducted experiments on three popular multimodal datasets to verify the superiority of ourmethod by comparing it with four baselines.
文摘This study presents results from sentiment analysis of Dynamic message sign (DMS) message content, focusing on messages that include numbers of road fatalities. As a traffic management tool, DMS plays a role in influencing driver behavior and assisting transportation agencies in achieving safe and efficient traffic movement. However, the psychological and behavioral effects of displaying fatality numbers on DMS remain poorly understood;hence, it is important to know the potential impacts of displaying such messages. The Iowa Department of Transportation displays the number of fatalities on a first screen, followed by a supplemental message hoping to promote safe driving;an example is “19 TRAFFIC DEATHS THIS YEAR IF YOU HAVE A SUPER BOWL DON’T DRIVE HIGH.” We employ natural language processing to decode the sentiment and undertone of the supplementary message and investigate how they influence driving speeds. According to the results of a mixed effect model, drivers reduced speeds marginally upon encountering DMS fatality text with a positive sentiment with a neutral undertone. This category had the largest associated amount of speed reduction, while messages with negative sentiment with a negative undertone had the second largest amount of speed reduction, greater than other combinations, including positive sentiment with a positive undertone.
基金This work is partly supported by the Fundamental Research Funds for the Central Universities(CUC230A013)It is partly supported by Natural Science Foundation of Beijing Municipality(No.4222038)It is also supported by National Natural Science Foundation of China(Grant No.62176240).
文摘In recent years,deep learning methods have developed rapidly and found application in many fields,including natural language processing.In the field of aspect-level sentiment analysis,deep learning methods can also greatly improve the performance of models.However,previous studies did not take into account the relationship between user feature extraction and contextual terms.To address this issue,we use data feature extraction and deep learning combined to develop an aspect-level sentiment analysis method.To be specific,we design user comment feature extraction(UCFE)to distill salient features from users’historical comments and transform them into representative user feature vectors.Then,the aspect-sentence graph convolutional neural network(ASGCN)is used to incorporate innovative techniques for calculating adjacency matrices;meanwhile,ASGCN emphasizes capturing nuanced semantics within relationships among aspect words and syntactic dependency types.Afterward,three embedding methods are devised to embed the user feature vector into the ASGCN model.The empirical validations verify the effectiveness of these models,consistently surpassing conventional benchmarks and reaffirming the indispensable role of deep learning in advancing sentiment analysis methodologies.
文摘Sentiment analysis, a crucial task in discerning emotional tones within the text, plays a pivotal role in understandingpublic opinion and user sentiment across diverse languages.While numerous scholars conduct sentiment analysisin widely spoken languages such as English, Chinese, Arabic, Roman Arabic, and more, we come to grapplingwith resource-poor languages like Urdu literature which becomes a challenge. Urdu is a uniquely crafted language,characterized by a script that amalgamates elements from diverse languages, including Arabic, Parsi, Pashtu,Turkish, Punjabi, Saraiki, and more. As Urdu literature, characterized by distinct character sets and linguisticfeatures, presents an additional hurdle due to the lack of accessible datasets, rendering sentiment analysis aformidable undertaking. The limited availability of resources has fueled increased interest among researchers,prompting a deeper exploration into Urdu sentiment analysis. This research is dedicated to Urdu languagesentiment analysis, employing sophisticated deep learning models on an extensive dataset categorized into fivelabels: Positive, Negative, Neutral, Mixed, and Ambiguous. The primary objective is to discern sentiments andemotions within the Urdu language, despite the absence of well-curated datasets. To tackle this challenge, theinitial step involves the creation of a comprehensive Urdu dataset by aggregating data from various sources such asnewspapers, articles, and socialmedia comments. Subsequent to this data collection, a thorough process of cleaningand preprocessing is implemented to ensure the quality of the data. The study leverages two well-known deeplearningmodels, namely Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN), for bothtraining and evaluating sentiment analysis performance. Additionally, the study explores hyperparameter tuning tooptimize the models’ efficacy. Evaluation metrics such as precision, recall, and the F1-score are employed to assessthe effectiveness of the models. The research findings reveal that RNN surpasses CNN in Urdu sentiment analysis,gaining a significantly higher accuracy rate of 91%. This result accentuates the exceptional performance of RNN,solidifying its status as a compelling option for conducting sentiment analysis tasks in the Urdu language.
基金Science and Technology Innovation 2030‐“New Generation Artificial Intelligence”major project,Grant/Award Number:2020AAA0108703。
文摘Sentiment analysis is a fine‐grained analysis task that aims to identify the sentiment polarity of a specified sentence.Existing methods in Chinese sentiment analysis tasks only consider sentiment features from a single pole and scale and thus cannot fully exploit and utilise sentiment feature information,making their performance less than ideal.To resolve the problem,the authors propose a new method,GP‐FMLNet,that integrates both glyph and phonetic information and design a novel feature matrix learning process for phonetic features with which to model words that have the same pinyin information but different glyph information.Our method solves the problem of misspelling words influencing sentiment polarity prediction results.Specifically,the authors iteratively mine character,glyph,and pinyin features from the input comments sentences.Then,the authors use soft attention and matrix compound modules to model the phonetic features,which empowers their model to keep on zeroing in on the dynamic‐setting words in various positions and to dispense with the impacts of the deceptive‐setting ones.Ex-periments on six public datasets prove that the proposed model fully utilises the glyph and phonetic information and improves on the performance of existing Chinese senti-ment analysis algorithms.
文摘This study undertakes a thorough analysis of the sentiment within the r/Corona-virus subreddit community regarding COVID-19 vaccines on Reddit. We meticulously collected and processed 34,768 comments, spanning from November 20, 2020, to January 17, 2021, using sentiment calculation methods such as TextBlob and Twitter-RoBERTa-Base-sentiment to categorize comments into positive, negative, or neutral sentiments. The methodology involved the use of Count Vectorizer as a vectorization technique and the implementation of advanced ensemble algorithms like XGBoost and Random Forest, achieving an accuracy of approximately 80%. Furthermore, through the Dirichlet latent allocation, we identified 23 distinct reasons for vaccine distrust among negative comments. These findings are crucial for understanding the community’s attitudes towards vaccination and can guide targeted public health messaging. Our study not only provides insights into public opinion during a critical health crisis, but also demonstrates the effectiveness of combining natural language processing tools and ensemble algorithms in sentiment analysis.
文摘Aiming at the problem that existing models in aspect-level sentiment analysis cannot fully and effectively utilize sentence semantic and syntactic structure information, this paper proposes a graph neural network-based aspect-level sentiment classification model. Self-attention, aspectual word multi-head attention and dependent syntactic relations are fused and the node representations are enhanced with graph convolutional networks to enable the model to fully learn the global semantic and syntactic structural information of sentences. Experimental results show that the model performs well on three public benchmark datasets Rest14, Lap14, and Twitter, improving the accuracy of sentiment classification.
基金funded by the BeijingMunicipal Natural Science Foundation(Grant No.4212026)Foundation Enhancement Program(Grant No.2021-JCJQ-JJ-0059).
文摘Sentiment analysis plays a vital role in understanding public opinions and sentiments toward various topics.In recent years,the rise of social media platforms(SMPs)has provided a rich source of data for analyzing public opinions,particularly in the context of election-related conversations.Nevertheless,sentiment analysis of electionrelated tweets presents unique challenges due to the complex language used,including figurative expressions,sarcasm,and the spread of misinformation.To address these challenges,this paper proposes Election-focused Bidirectional Encoder Representations from Transformers(ElecBERT),a new model for sentiment analysis in the context of election-related tweets.Election-related tweets pose unique challenges for sentiment analysis due to their complex language,sarcasm,andmisinformation.ElecBERT is based on the Bidirectional Encoder Representations from Transformers(BERT)language model and is fine-tuned on two datasets:Election-Related Sentiment-Annotated Tweets(ElecSent)-Multi-Languages,containing 5.31 million labeled tweets in multiple languages,and ElecSent-English,containing 4.75million labeled tweets in English.Themodel outperforms othermachine learning models such as Support Vector Machines(SVM),Na飗e Bayes(NB),and eXtreme Gradient Boosting(XGBoost),with an accuracy of 0.9905 and F1-score of 0.9816 on ElecSent-Multi-Languages,and an accuracy of 0.9930 and F1-score of 0.9899 on ElecSent-English.The performance of differentmodels was compared using the 2020 United States(US)Presidential Election as a case study.The ElecBERT-English and ElecBERT-Multi-Languages models outperformed BERTweet,with the ElecBERT-English model achieving aMean Absolute Error(MAE)of 6.13.This paper presents a valuable contribution to sentiment analysis in the context of election-related tweets,with potential applications in political analysis,social media management,and policymaking.
基金This research project was supported by the Deanship of Scientific Research,Prince Sattam Bin Abdulaziz University,KSA,Project Grant No.2021/01/17783,Sha M,www.psau.edu.sa.
文摘The use of Amazon Web Services is growing rapidly as more users are adopting the technology.It has various functionalities that can be used by large corporates and individuals as well.Sentiment analysis is used to build an intelligent system that can study the opinions of the people and help to classify those related emotions.In this research work,sentiment analysis is performed on the AWS Elastic Compute Cloud(EC2)through Twitter data.The data is managed to the EC2 by using elastic load balancing.The collected data is subjected to preprocessing approaches to clean the data,and then machine learning-based logistic regression is employed to categorize the sentiments into positive and negative sentiments.High accuracy of 94.17%is obtained through the proposed machine learning model which is higher than the other models that are developed using the existing algorithms.
基金The authors thank the Deanship of Scientific Research at King Khalid University for funding this work through Small Groups Project under grant number(120/43)Princess Nourah bint Abdulrahman UniversityResearchers Supporting Project number(PNURSP2022R281)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research atUmmAl-Qura University for supporting this work by Grant Code:(22UQU4331004DSR06).
文摘Applied linguistics is an interdisciplinary domain which identifies,investigates,and offers solutions to language-related real-life problems.The new coronavirus disease,otherwise known as Coronavirus disease(COVID-19),has severely affected the everyday life of people all over the world.Specifically,since there is insufficient access to vaccines and no straight or reliable treatment for coronavirus infection,the country has initiated the appropriate preventive measures(like lockdown,physical separation,and masking)for combating this extremely transmittable disease.So,individuals spent more time on online social media platforms(i.e.,Twitter,Facebook,Instagram,LinkedIn,and Reddit)and expressed their thoughts and feelings about coronavirus infection.Twitter has become one of the popular social media platforms and allows anyone to post tweets.This study proposes a sine cosine optimization with bidirectional gated recurrent unit-based senti-ment analysis(SCOBGRU-SA)on COVID-19 tweets.The SCOBGRU-SA technique aimed to detect and classify the various sentiments in Twitter data during the COVID-19 pandemic.The SCOBGRU-SA technique follows data pre-processing and the Fast-Text word embedding process to accomplish this.Moreover,the BGRU model is utilized to recognise and classify sen-timents present in the tweets.Furthermore,the SCO algorithm is exploited for tuning the BGRU method’s hyperparameter,which helps attain improved classification performance.The experimental validation of the SCOBGRU-SA technique takes place using a benchmark dataset,and the results signify its promising performance compared to other DL models.
文摘The public is increasingly using social media platforms such as Twitter and Facebook to express their views on a variety of topics.As a result,social media has emerged as the most effective and largest open source for obtaining public opinion.Single node computational methods are inefficient for sentiment analysis on such large datasets.Supercomputers or parallel or distributed proces-sing are two options for dealing with such large amounts of data.Most parallel programming frameworks,such as MPI(Message Processing Interface),are dif-ficult to use and scale in environments where supercomputers are expensive.Using the Apache Spark Parallel Model,this proposed work presents a scalable system for sentiment analysis on Twitter.A Spark-based Naive Bayes training technique is suggested for this purpose;unlike prior research,this algorithm does not need any disk access.Millions of tweets have been classified using the trained model.Experiments with various-sized clusters reveal that the suggested strategy is extremely scalable and cost-effective for larger data sets.It is nearly 12 times quicker than the Map Reduce-based model and nearly 21 times faster than the Naive Bayes Classifier in Apache Mahout.To evaluate the framework’s scalabil-ity,we gathered a large training corpus from Twitter.The accuracy of the classi-fier trained with this new dataset was more than 80%.
基金supported through the Annual Funding track by the Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia[Project No.AN000685].
文摘Sentiment analysis(SA)is the procedure of recognizing the emotions related to the data that exist in social networking.The existence of sarcasm in tex-tual data is a major challenge in the efficiency of the SA.Earlier works on sarcasm detection on text utilize lexical as well as pragmatic cues namely interjection,punctuations,and sentiment shift that are vital indicators of sarcasm.With the advent of deep-learning,recent works,leveraging neural networks in learning lexical and contextual features,removing the need for handcrafted feature.In this aspect,this study designs a deep learning with natural language processing enabled SA(DLNLP-SA)technique for sarcasm classification.The proposed DLNLP-SA technique aims to detect and classify the occurrence of sarcasm in the input data.Besides,the DLNLP-SA technique holds various sub-processes namely preprocessing,feature vector conversion,and classification.Initially,the pre-processing is performed in diverse ways such as single character removal,multi-spaces removal,URL removal,stopword removal,and tokenization.Secondly,the transformation of feature vectors takes place using the N-gram feature vector technique.Finally,mayfly optimization(MFO)with multi-head self-attention based gated recurrent unit(MHSA-GRU)model is employed for the detection and classification of sarcasm.To verify the enhanced outcomes of the DLNLP-SA model,a comprehensive experimental investigation is performed on the News Headlines Dataset from Kaggle Repository and the results signified the supremacy over the existing approaches.