Thermal-electric bilayer invisibility cloak can prevent the heat flux and electric current from touching the object without distorting the external temperature and electric potential fields simultaneously.In this pape...Thermal-electric bilayer invisibility cloak can prevent the heat flux and electric current from touching the object without distorting the external temperature and electric potential fields simultaneously.In this paper,we design an omnidirectional thermal-electric invisibility cloak with anisotropic geometry.Based on the theory of neutral inclusion,the anisotropic effective thermal and electric conductivities of confocal elliptical bilayer core-shell structure are derived,thus obtaining the anisotropic matrix material to eliminate the external disturbances omnidirectionally.The inner shell of the cloak is selected as an insulating material to shield the heat flux and electric current.Then,the omnidirectional thermal-electric cloaking effect is verified numerically and experimentally based on the theoretical anisotropic matrix and manufactured composite structure,respectively.Furthermore,we achieve the thermal-electric cloaking effect under a specific direction of heat flux and electric current using the isotropic natural materials to broaden the selection range of materials.The method proposed to eliminate anisotropy and achieve the omnidirectional effect could also be expanded to other different physical fields for the metadevices with different functions.展开更多
The existing knowledge on the electrodynamics of invisibility cloaking based on transformation optics is reviewed from an integrated science and engineering perspective.Several significant electromagnetic problems tha...The existing knowledge on the electrodynamics of invisibility cloaking based on transformation optics is reviewed from an integrated science and engineering perspective.Several significant electromagnetic problems that have resulted in intense discussions in the past few years are summarized in terms of propagation,scattering,radiation and fabrication.Finally,the road ahead toward invisibility cloaking and transformation optics is discussed from the viewpoint of the author.展开更多
Searching for an optimal solution among many nonunique answers provided by transformation optics is critical for many branches of research,such as the burgeoning research on invisibility cloaks.The past decades have w...Searching for an optimal solution among many nonunique answers provided by transformation optics is critical for many branches of research,such as the burgeoning research on invisibility cloaks.The past decades have witnessed rapid development of transformation optics,and different kinds of invisibility cloaks have been designed and implemented.However,the available cloaks realized thus far have been mostly demonstrated with reduced parameters,which greatly impact the predefined cloaking performance.Here,we report a general design strategy to realize full-parameter omnidirectional cloaks that can hide arbitrarily shaped objects in free space.Our approach combines a singular transformation with transformation-invariant metamaterials.The cloaking device with extreme parameters is implemented using a metallic array structure.In the experiment,two cloak samples are designed and fabricated,one with nondiscrete cloaking regions and the other with separated hidden regions.Near-unit transmission of electromagnetic waves with arbitrary incident angles is experimentally demonstrated along with significantly suppressed scattering.Our work challenges the prevailing paradigms of invisibility cloaks and provides deep insight into how transformation optics could be harnessed to obtain easily-accessible metadevices.展开更多
A novel cloaking scheme to hide an object in a half space from electromagnetic (EM) detection without reflection is firstly presented. The proposed cloaking scheme contains a couple of matching strips, which consist...A novel cloaking scheme to hide an object in a half space from electromagnetic (EM) detection without reflection is firstly presented. The proposed cloaking scheme contains a couple of matching strips, which consist of an isotropic material layer and an anisotropic UPML layer, located right under the bottom surface of a semi-cylindrical cloaking shell. Simple expressions for the material parameters of the cloaking scheme are derived. Numerical simulations are also performed, and a good cloaking effect is achieved. The cloaking scheme is effective to hide the local object with strong scattering characters placed on mobile carders, such as the radar antenna system on an aircraft.展开更多
We propose a scheme of acoustic spherical cloaking by means of background irrotational flow in compressible fluid.The background flow forms a virtual curved spacetime and directs the sound waves to bypass the cloaked ...We propose a scheme of acoustic spherical cloaking by means of background irrotational flow in compressible fluid.The background flow forms a virtual curved spacetime and directs the sound waves to bypass the cloaked objects. To satisfy the laws of real fluid, we show that spatially distributed mass source and momentum source are necessary to supply. The propagation of sound waves in this system is studied via both geometric acoustics approximation and full wave approach.The analytic solution of sound fields is obtained for plane wave incidence. The results reveal the effect of phase retardation(or lead) in comparison with the ordinary transformation-acoustic cloak. In addition, the ability of cloaking is also evaluated for unideal background flows by analyzing the scattering cross section.展开更多
The method of designing electromagnetic invisible cloaks is usually based on the form-invariance of Maxwell's equations in coordinate transformation. The exterior boundary of a cylindrical invisible cloak is unchange...The method of designing electromagnetic invisible cloaks is usually based on the form-invariance of Maxwell's equations in coordinate transformation. The exterior boundary of a cylindrical invisible cloak is unchanged and the interior boundary is extended from that of a point to that of a cylindrical region in coordination transformation. This transformation process makes perfect cloaks, but it causes singularity in the constitutive material parameters of cloaks. This singularity makes the cloaks impossible to realize in practice. In order to remove this singularity, this paper sets a small cylindrical region replacing a point in the space transformation. The cylindrical region is so small that it does not affect the invisibility effects, but it can remove the singularity for material parameters. Full wave simulations based on the finite element method were used to verify the designed cloaks.展开更多
We present the design and the experimental demonstration of an invisible cloak with irregular shape by using tensor transmission line(TL) metamaterials. The fabricated cloak consists of tensor TL unit cells exhibiti...We present the design and the experimental demonstration of an invisible cloak with irregular shape by using tensor transmission line(TL) metamaterials. The fabricated cloak consists of tensor TL unit cells exhibiting anisotropic effective material parameters, while the background medium consists of isotropic TL unit cells. The simulated and the measured field patterns around the cloak show a fairly good agreement, both demonstrate that the fabricated cloak can shield the cloaked interior area from electromagnetic fields without perturbing the external fields. The scattering of the cloaked perfect electric conductor(PEC) is minimized. Furthermore, the nonresonant property of the TL structure results in a relatively broad bandwidth of the realized cloak, which is clearly observed in our experiment.展开更多
This paper reports that a general method of designing invisible cloaks is using variant constitutive material parameters to realize the space transformation. A hollow region can be hidden after this transformation. It...This paper reports that a general method of designing invisible cloaks is using variant constitutive material parameters to realize the space transformation. A hollow region can be hidden after this transformation. It was recently shown (Ma H, Qu S B, Xu Z and Wang J F 2009 Appl. Phys. Lett. 94 103501) that when the original point moves to the boundary of a cloak, the cloak can be designed to be open. Based on this theory, we propose multi-window invisible cloaks which can conceal a group of objects. Full wave simulations for invisible cloaks with regular and irregular shapes verified this method.展开更多
Two-dimensional (2D) elliptically cylindrical invisible cloaks with multiple regions are designed based on the trans-formation optics and the complementary media theory. Multiple invisible cloak regions can be obtai...Two-dimensional (2D) elliptically cylindrical invisible cloaks with multiple regions are designed based on the trans-formation optics and the complementary media theory. Multiple invisible cloak regions can be obtained by properly using the compressed or folded transformation in each space layer. The constitutive parameter tensor expressions for each re- gion have been obtained. The results of full wave simulations by using finite element software confirm the validity of the constitutive parameter tensor expressions. In addition, the parameters are relatively easier to realize.展开更多
Reduction of electromagnetic scattering from a conducting cylinder could be achieved by covering it with optimized multilayers of normal dielectric and plasmonic material. The plasmonic material with intrinsic losses ...Reduction of electromagnetic scattering from a conducting cylinder could be achieved by covering it with optimized multilayers of normal dielectric and plasmonic material. The plasmonic material with intrinsic losses could degrade the cloaking effect. Using a genetic algorithm, we present the optimized design of loss and gain multilayers for reduction of the scattering from a perfect conducting cylinder. This multilayered structure is theoretically and numerically analyzed when the plasmonic material with low loss and high loss respectively is considered. We demonstrate by full-wave simulation that the optimized nonmagnetic gain-loss design can greatly compensate the decreased cloaking effect caused by loss material,which facilitates the realization of practical electromagnetic cloaking, especially in the optical range.展开更多
In this work,we investigate wave propagation through a zero index meta-material(ZIM)waveguide embedded with triangular dielectric defects.We provide a theoretical guidance on how to achieve total reflection and total t...In this work,we investigate wave propagation through a zero index meta-material(ZIM)waveguide embedded with triangular dielectric defects.We provide a theoretical guidance on how to achieve total reflection and total transmission(i.e.,cloaking)by adjusting the defect sizes and/or permittivities of the defects.Our work provides a systematical way in manipulating wave propagation through ZIM in addi-tion to the widely studied dielectric defects with cylindrical and rectangular geome-tries.展开更多
We consider the approximate acoustic cloaking in an inhomogeneous isotropic background space.By employing transformation media,together with the use of a sound-soft layer lining right outside the cloaked region,we sho...We consider the approximate acoustic cloaking in an inhomogeneous isotropic background space.By employing transformation media,together with the use of a sound-soft layer lining right outside the cloaked region,we show that one can achieve the near-invisibility by the"blow-up-a-small-region"construction.This is based on novel scattering estimates corresponding to multiple multi-scale obstacles located in an isotropic space.We develop a novel system of integral equations to decouple the nonlinear scattering interaction among the small obstacle components,the regular obstacle components and the inhomogeneous background medium.展开更多
In this review article, a brief introduction on the theory, experiments and applications of metamaterials is presented. The main focuses are concentrated on the composing meta-atoms, the method of transformation optic...In this review article, a brief introduction on the theory, experiments and applications of metamaterials is presented. The main focuses are concentrated on the composing meta-atoms, the method of transformation optics, the experimental demonstration of negative refraction, and the realizations of invisibility cloaks and electromagnetic black hole. At the end of this review, some typical applications of metamaterials, including high-performance antennas made of zero-refractive-index materials, inhomogeneous metamaterial lenses, and planar metasurfaces, are introduced in details.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.11572090)the Fundamental Research Funds for the Central Universities(Grant No.3072022GIP0202).
文摘Thermal-electric bilayer invisibility cloak can prevent the heat flux and electric current from touching the object without distorting the external temperature and electric potential fields simultaneously.In this paper,we design an omnidirectional thermal-electric invisibility cloak with anisotropic geometry.Based on the theory of neutral inclusion,the anisotropic effective thermal and electric conductivities of confocal elliptical bilayer core-shell structure are derived,thus obtaining the anisotropic matrix material to eliminate the external disturbances omnidirectionally.The inner shell of the cloak is selected as an insulating material to shield the heat flux and electric current.Then,the omnidirectional thermal-electric cloaking effect is verified numerically and experimentally based on the theoretical anisotropic matrix and manufactured composite structure,respectively.Furthermore,we achieve the thermal-electric cloaking effect under a specific direction of heat flux and electric current using the isotropic natural materials to broaden the selection range of materials.The method proposed to eliminate anisotropy and achieve the omnidirectional effect could also be expanded to other different physical fields for the metadevices with different functions.
文摘The existing knowledge on the electrodynamics of invisibility cloaking based on transformation optics is reviewed from an integrated science and engineering perspective.Several significant electromagnetic problems that have resulted in intense discussions in the past few years are summarized in terms of propagation,scattering,radiation and fabrication.Finally,the road ahead toward invisibility cloaking and transformation optics is discussed from the viewpoint of the author.
基金sponsored by the Key Research and Development Program of the Ministry of Science and Technology(Grants Nos.2022Y FA1404704,2022YFA1405200,and 2022YFA1404902)the National Natural Science Foundation of China(Grant No.61975176)+5 种基金the Key Research and Development Program of Zhejiang Province(Grant No.2022C01036)the Fundamental Research Funds for the Central Universitiesthe work at Nanyang Technological University was sponsored by Singapore Ministry of Education(Grant No.MOE2018-T2-2-189(S))A*Star AME IRG Grant(Grant No.A20E5c0095)Programmatic Funds(Grant No.A18A7b0058)National Research Foundation Singapore Competitive Research Program(Grant Nos.NRF-CRP22-2019-0006 and NRF-CRP23-2019-0007).
文摘Searching for an optimal solution among many nonunique answers provided by transformation optics is critical for many branches of research,such as the burgeoning research on invisibility cloaks.The past decades have witnessed rapid development of transformation optics,and different kinds of invisibility cloaks have been designed and implemented.However,the available cloaks realized thus far have been mostly demonstrated with reduced parameters,which greatly impact the predefined cloaking performance.Here,we report a general design strategy to realize full-parameter omnidirectional cloaks that can hide arbitrarily shaped objects in free space.Our approach combines a singular transformation with transformation-invariant metamaterials.The cloaking device with extreme parameters is implemented using a metallic array structure.In the experiment,two cloak samples are designed and fabricated,one with nondiscrete cloaking regions and the other with separated hidden regions.Near-unit transmission of electromagnetic waves with arbitrary incident angles is experimentally demonstrated along with significantly suppressed scattering.Our work challenges the prevailing paradigms of invisibility cloaks and provides deep insight into how transformation optics could be harnessed to obtain easily-accessible metadevices.
基金Project supported by the Program for New Century Excellent Talents in University of China (Grant No. NCET-10-0894)
文摘A novel cloaking scheme to hide an object in a half space from electromagnetic (EM) detection without reflection is firstly presented. The proposed cloaking scheme contains a couple of matching strips, which consist of an isotropic material layer and an anisotropic UPML layer, located right under the bottom surface of a semi-cylindrical cloaking shell. Simple expressions for the material parameters of the cloaking scheme are derived. Numerical simulations are also performed, and a good cloaking effect is achieved. The cloaking scheme is effective to hide the local object with strong scattering characters placed on mobile carders, such as the radar antenna system on an aircraft.
基金supported by the National Natural Science Foundation of China(Grant Nos.11475088 and 11275024)the Fund from the Ministry of Science and Technology of China(Grant No.2013YQ030595-3)
文摘We propose a scheme of acoustic spherical cloaking by means of background irrotational flow in compressible fluid.The background flow forms a virtual curved spacetime and directs the sound waves to bypass the cloaked objects. To satisfy the laws of real fluid, we show that spatially distributed mass source and momentum source are necessary to supply. The propagation of sound waves in this system is studied via both geometric acoustics approximation and full wave approach.The analytic solution of sound fields is obtained for plane wave incidence. The results reveal the effect of phase retardation(or lead) in comparison with the ordinary transformation-acoustic cloak. In addition, the ability of cloaking is also evaluated for unideal background flows by analyzing the scattering cross section.
基金Project supported partly by the National Natural Science Foundation of China (Grant Nos.50632030,10474077,and 60871027)partly by the National Basic Research Program of China (Grant No.2009CB613306)partly by the Natural Science Foundation of Shaanxi Province,China (Grant No.SJ08F01)
文摘The method of designing electromagnetic invisible cloaks is usually based on the form-invariance of Maxwell's equations in coordinate transformation. The exterior boundary of a cylindrical invisible cloak is unchanged and the interior boundary is extended from that of a point to that of a cylindrical region in coordination transformation. This transformation process makes perfect cloaks, but it causes singularity in the constitutive material parameters of cloaks. This singularity makes the cloaks impossible to realize in practice. In order to remove this singularity, this paper sets a small cylindrical region replacing a point in the space transformation. The cylindrical region is so small that it does not affect the invisibility effects, but it can remove the singularity for material parameters. Full wave simulations based on the finite element method were used to verify the designed cloaks.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174280,60990323,and 60990320)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.YYYJ-1123)
文摘We present the design and the experimental demonstration of an invisible cloak with irregular shape by using tensor transmission line(TL) metamaterials. The fabricated cloak consists of tensor TL unit cells exhibiting anisotropic effective material parameters, while the background medium consists of isotropic TL unit cells. The simulated and the measured field patterns around the cloak show a fairly good agreement, both demonstrate that the fabricated cloak can shield the cloaked interior area from electromagnetic fields without perturbing the external fields. The scattering of the cloaked perfect electric conductor(PEC) is minimized. Furthermore, the nonresonant property of the TL structure results in a relatively broad bandwidth of the realized cloak, which is clearly observed in our experiment.
基金Project supported partly by the National Natural Science Foundation of China (Grant Nos.50632030,10474077,and 60871027)partly by the National Basic Research Program of China (Grant No.2009CB613306)partly by the Natural Science Foundation of Shaanxi Province,China (Grant No.SJ08F01)
文摘This paper reports that a general method of designing invisible cloaks is using variant constitutive material parameters to realize the space transformation. A hollow region can be hidden after this transformation. It was recently shown (Ma H, Qu S B, Xu Z and Wang J F 2009 Appl. Phys. Lett. 94 103501) that when the original point moves to the boundary of a cloak, the cloak can be designed to be open. Based on this theory, we propose multi-window invisible cloaks which can conceal a group of objects. Full wave simulations for invisible cloaks with regular and irregular shapes verified this method.
基金Project supported by the National Natural Science Foundation of China(Grant No.61078060)the Innovative Research Team Program of Ningbo,China(Grant No.2009B21007)the K.C.Wong Magna Fund in Ningbo University,China
文摘Two-dimensional (2D) elliptically cylindrical invisible cloaks with multiple regions are designed based on the trans-formation optics and the complementary media theory. Multiple invisible cloak regions can be obtained by properly using the compressed or folded transformation in each space layer. The constitutive parameter tensor expressions for each re- gion have been obtained. The results of full wave simulations by using finite element software confirm the validity of the constitutive parameter tensor expressions. In addition, the parameters are relatively easier to realize.
基金Project supported by the Research Foundation of Jinling Institute of Technology,China(Grant No.JIT-B-201426)the Jiangsu Modern Education and Technology Key Project,China(Grant No.2014-R-31984)+1 种基金the Jiangsu 333 Project Funded Research Project,China(Grant No.BRA2010004)the University Science Research Project of Jiangsu Province,China(Grant No.15KJB520010)
文摘Reduction of electromagnetic scattering from a conducting cylinder could be achieved by covering it with optimized multilayers of normal dielectric and plasmonic material. The plasmonic material with intrinsic losses could degrade the cloaking effect. Using a genetic algorithm, we present the optimized design of loss and gain multilayers for reduction of the scattering from a perfect conducting cylinder. This multilayered structure is theoretically and numerically analyzed when the plasmonic material with low loss and high loss respectively is considered. We demonstrate by full-wave simulation that the optimized nonmagnetic gain-loss design can greatly compensate the decreased cloaking effect caused by loss material,which facilitates the realization of practical electromagnetic cloaking, especially in the optical range.
基金Prof.Yunqing Huang is partially supported by NSFC Key Project 91430213,IRT1179 of PCSIRT and MOST 2010DFR00700Prof.Jichun Li is Partially supported by NSFC project 11271310 and a grant from the Simons Foundation(#281296 to Jichun Li).
文摘In this work,we investigate wave propagation through a zero index meta-material(ZIM)waveguide embedded with triangular dielectric defects.We provide a theoretical guidance on how to achieve total reflection and total transmission(i.e.,cloaking)by adjusting the defect sizes and/or permittivities of the defects.Our work provides a systematical way in manipulating wave propagation through ZIM in addi-tion to the widely studied dielectric defects with cylindrical and rectangular geome-tries.
基金supported by National Natural Science Foundation of China(Grant Nos.1110141411201453+1 种基金91130022 and 91130026)National Science Foundation of USA(Grant No.DMS 1207784)
文摘We consider the approximate acoustic cloaking in an inhomogeneous isotropic background space.By employing transformation media,together with the use of a sound-soft layer lining right outside the cloaked region,we show that one can achieve the near-invisibility by the"blow-up-a-small-region"construction.This is based on novel scattering estimates corresponding to multiple multi-scale obstacles located in an isotropic space.We develop a novel system of integral equations to decouple the nonlinear scattering interaction among the small obstacle components,the regular obstacle components and the inhomogeneous background medium.
基金supported by the National Natural Science Foundation of China(Grant Nos.61571117,61171024,61171026,61138001,61302018,61401089 and 61522106)the 111 Project(Grant No.111-2-05)+2 种基金the Open Research Funds of State Key Laboratory of Millimeter Waves(Grant No.K201409)the Fundamental Research Funds for the Central Universities(Grant Nos.LZUJBKY-2015-k07,LZUJBKY-2014-43 and LZUJBKY-2014-237)the Foundation of National Excellent Doctoral Dissertation of China
文摘In this review article, a brief introduction on the theory, experiments and applications of metamaterials is presented. The main focuses are concentrated on the composing meta-atoms, the method of transformation optics, the experimental demonstration of negative refraction, and the realizations of invisibility cloaks and electromagnetic black hole. At the end of this review, some typical applications of metamaterials, including high-performance antennas made of zero-refractive-index materials, inhomogeneous metamaterial lenses, and planar metasurfaces, are introduced in details.