Suppose R is a commutative ring with 1, and 2 is a unit of R. Let Tn(R) be the n × n upper triangular matrix modular over R, and let (?)i(R) (i=2 or 3) be the set of all R-module automorphisms on Tn(R) that prese...Suppose R is a commutative ring with 1, and 2 is a unit of R. Let Tn(R) be the n × n upper triangular matrix modular over R, and let (?)i(R) (i=2 or 3) be the set of all R-module automorphisms on Tn(R) that preserve involutory or tripotent. The main result in this paper is that f ∈ (?)i(R) if and only if there exists an invertible matrix U ∈ Tn(R) and orthogonal idempotent elements e1,e2,e3 ande4 in R with such that where展开更多
基金Foundation item:The NSF(10271021)of China and NSF(10531130)of Heilongjiang Education Committee
文摘Suppose R is a commutative ring with 1, and 2 is a unit of R. Let Tn(R) be the n × n upper triangular matrix modular over R, and let (?)i(R) (i=2 or 3) be the set of all R-module automorphisms on Tn(R) that preserve involutory or tripotent. The main result in this paper is that f ∈ (?)i(R) if and only if there exists an invertible matrix U ∈ Tn(R) and orthogonal idempotent elements e1,e2,e3 ande4 in R with such that where