We explore nitric oxide (NO) effect on K+in channels in Arabidopsis guard cells. We observed NO inhib- ited K+in currents when Ca2+ chelator EGTA (Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid) w...We explore nitric oxide (NO) effect on K+in channels in Arabidopsis guard cells. We observed NO inhib- ited K+in currents when Ca2+ chelator EGTA (Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid) was not added in the pipette solution; K+in currents were not sensitive to NO when cytosolic Ca2+ was chelated by EGTA. NO inhibited the Arabidopsis stomatal opening, but when EGTA was added in the bath solution, inhibition effect of NO on stomatal opening vanished. Thus, it implies that NO ele- vates cytosolic Ca2+ by activating plasma membrane Ca2+ channels firstly, then inactivates K+in chan- nels, resulting in stomatal opening suppressed subsequently.展开更多
The family of voltage-gated (Shaker-like) potassium channels in plants includes both inward-rectifying (Kin) channels that allow plant cells to accumulate K+ and outward-rectifying (Kout) channels that mediate ...The family of voltage-gated (Shaker-like) potassium channels in plants includes both inward-rectifying (Kin) channels that allow plant cells to accumulate K+ and outward-rectifying (Kout) channels that mediate K+ efflux. Despite their dose structural similarities, Kin and Kout channels differ in their gating sensitivity towards voltage and the extracellular K+ concentration. We have carried out a systematic program of domain swapping between the Kout channel SKOR and the Kin channel KAT1 to examine the impacts on gating of the pore regions, the S4, S5, and the S6 helices. We found that, in particular, the N-terminal part of the S5 played a critical role in KAT1 and SKOR gating. Our findings were supported by molecular dynamics of KAT1 and SKOR homology models. In silico analysis revealed that during channel opening and closing, displacement of certain residues, especially in the S5 and S6 segments, is more pronounced in KAT1 than in SKOR. From our analysis of the S4-S6 region, we conclude that gating (and K+-sensing in SKOR) depend on a number of structural elements that are dispersed over this -145-residue sequence and that these place additional constraints on configurational rearrangement of the channels during gating.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 20701028)
文摘We explore nitric oxide (NO) effect on K+in channels in Arabidopsis guard cells. We observed NO inhib- ited K+in currents when Ca2+ chelator EGTA (Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid) was not added in the pipette solution; K+in currents were not sensitive to NO when cytosolic Ca2+ was chelated by EGTA. NO inhibited the Arabidopsis stomatal opening, but when EGTA was added in the bath solution, inhibition effect of NO on stomatal opening vanished. Thus, it implies that NO ele- vates cytosolic Ca2+ by activating plasma membrane Ca2+ channels firstly, then inactivates K+in chan- nels, resulting in stomatal opening suppressed subsequently.
文摘The family of voltage-gated (Shaker-like) potassium channels in plants includes both inward-rectifying (Kin) channels that allow plant cells to accumulate K+ and outward-rectifying (Kout) channels that mediate K+ efflux. Despite their dose structural similarities, Kin and Kout channels differ in their gating sensitivity towards voltage and the extracellular K+ concentration. We have carried out a systematic program of domain swapping between the Kout channel SKOR and the Kin channel KAT1 to examine the impacts on gating of the pore regions, the S4, S5, and the S6 helices. We found that, in particular, the N-terminal part of the S5 played a critical role in KAT1 and SKOR gating. Our findings were supported by molecular dynamics of KAT1 and SKOR homology models. In silico analysis revealed that during channel opening and closing, displacement of certain residues, especially in the S5 and S6 segments, is more pronounced in KAT1 than in SKOR. From our analysis of the S4-S6 region, we conclude that gating (and K+-sensing in SKOR) depend on a number of structural elements that are dispersed over this -145-residue sequence and that these place additional constraints on configurational rearrangement of the channels during gating.