Permanganate/sulfite(Mn(VII)/S(IV))process is a promising pre-oxidation technology for sequestering the emerging organic contaminants in drinking water treatment plant.Iopamidol(IPM),a representative of iodinated X-ra...Permanganate/sulfite(Mn(VII)/S(IV))process is a promising pre-oxidation technology for sequestering the emerging organic contaminants in drinking water treatment plant.Iopamidol(IPM),a representative of iodinated X-ray contrast media,has been widely detected in water sources and has the risk of forming iodinated disinfection byproducts(I-DBPs)in water treatment system.In this study,we investigated the evolution of iodine species during the IPM degradation by the Mn(VII)/S(IV)process and its effect on the subsequent formation of I-DBPs during chlorination at pH 7.0 and 8.0.IPM could be effectively degraded in the Mn(VII)/S(IV)process at environmentally relevant pH(pH 7.0 and 8.0).The results of quenching and competitive oxidation kinetic experiments revealed that SO^(·-)_(4)was the major reactive oxidizing species contributing to the degradation of IPM whereas the contributions of HO·and reactive manganese species were negligible in the Mn(VII)/S(IV)process.I–and IO–3were generated while no HOI was detected during the degradation of IPM in the Mn(VII)/S(IV)process.The effects of IPM oxidation by Mn(VII)/S(IV)on the subsequent formation of chlorinated disinfection by-products(Cl-DBPs)during chlorination were related to the category of Cl-DBPs.The pre-oxidation of IPM by Mn(VII)/S(IV)resulted in the generation of I-DBPs during the disinfection process although no I-DBPs were detected if no pre-oxidation was applied.The finding of this study suggested that attention should be paid to the toxicity of DBPs when water containing iodinated organic contaminants is treated by Mn(VII)/S(IV)process or other pre-oxidation technologies.展开更多
Iodine containing disinfection by-products(I-DBPs) and haloacetaldehydes(HALs) are emerging disinfection by-product(DBP) classes of concern. The former due to its increased potential toxicity and the latter beca...Iodine containing disinfection by-products(I-DBPs) and haloacetaldehydes(HALs) are emerging disinfection by-product(DBP) classes of concern. The former due to its increased potential toxicity and the latter because it was found to be the third most relevant DBP class in mass in a U.S. nationwide drinking water study. These DBP classes have been scarcely investigated, and this work was performed to further explore their formation in drinking water under chlorination and chloramination scenarios. In order to do this, iodo-trihalomethanes(I-THMs),iodo-haloacetic acids(I-HAAs) and selected HALs(mono-HALs and di-HALs species, including iodoacetaldehyde) were investigated in DBP mixtures generated after chlorination and chloramination of different water matrices containing different levels of bromide and iodide in laboratory controlled reactions. Results confirmed the enhancement of I-DBP formation in the presence of monochloramine. While I-THMs and I-HAAs contributed almost equally to total I-DBP concentrations in chlorinated water, I-THMs contributed the most to total I-DBP levels in the case of chloraminated water. The most abundant and common I-THM species generated were bromochloroiodomethane, dichloroiodomethane, and chlorodiiodomethane. Iodoacetic acid and chloroiodoacetic acid contributed the most to the total I-HAA concentrations measured in the investigated disinfected water. As for the studied HALs, dihalogenated species were the compounds that predominantly formed under both investigated treatments.展开更多
The comprehensive control efficiency for the formation potentials(FPs) of a range of regulated and unregulated halogenated disinfection by-products(DBPs)(including carbonaceous DBPs(C-DBPs), nitrogenous DBPs(N...The comprehensive control efficiency for the formation potentials(FPs) of a range of regulated and unregulated halogenated disinfection by-products(DBPs)(including carbonaceous DBPs(C-DBPs), nitrogenous DBPs(N-DBPs), and iodinated DBPs(I-DBPs)) with the multiple drinking water treatment processes, including pre-ozonation, conventional treatment(coagulation–sedimentation, pre-sand filtration), ozone-biological activated carbon(O_3-BAC) advanced treatment, and post-sand filtration, was investigated. The potential toxic risks of DBPs by combing their FPs and toxicity values were also evaluated.The results showed that the multiple drinking water treatment processes had superior performance in removing organic/inorganic precursors and reducing the formation of a range of halogenated DBPs. Therein, ozonation significantly removed bromide and iodide,and thus reduced the formation of brominated and iodinated DBPs. The removal of organic carbon and nitrogen precursors by the conventional treatment processes was substantially improved by O_3-BAC advanced treatment, and thus prevented the formation of chlorinated C-DBPs and N-DBPs. However, BAC filtration leads to the increased formation of brominated C-DBPs and N-DBPs due to the increase of bromide/DOC and bromide/DON.After the whole multiple treatment processes, the rank order for integrated toxic risk values caused by these halogenated DBPs was haloacetonitriles(HANs)》haloacetamides(HAMs) 〉haloacetic acids(HAAs) 〉 trihalomethanes(THMs) 〉 halonitromethanes(HNMs) 》I-DBPs(I-HAMs and I-THMs). I-DBPs failed to cause high integrated toxic risk because of their very low FPs. The significant higher integrated toxic risk value caused by HANs than other halogenated DBPs cannot be ignored.展开更多
The presence of iodinated X-ray contrast media(ICM) in source waters is of high concern to public health because of their potential to generate highly toxic disinfection by-products(DBPs). The objective of this st...The presence of iodinated X-ray contrast media(ICM) in source waters is of high concern to public health because of their potential to generate highly toxic disinfection by-products(DBPs). The objective of this study was to determine the impact of ICM in source waters and the type of disinfectant on the overall toxicity of DBP mixtures and to determine which ICM and reaction conditions give rise to toxic by-products. Source waters collected from Akron,OH were treated with five different ICMs, including iopamidol, iopromide, iohexol,diatrizoate and iomeprol, with or without chlorine or chloramine disinfection. The reaction product mixtures were concentrated with XAD resins and the mammalian cell cytotoxicity and genotoxicity of the reaction mixture concentrates was measured. Water containing iopamidol generated an enhanced level of mammalian cell cytotoxicity and genotoxicity after disinfection. While chlorine disinfection with iopamidol resulted in the highest cytotoxicity overall, the relative iopamidol-mediated increase in toxicity was greater when chloramine was used as the disinfectant compared with chlorine. Four other ICMs(iopromide, iohexol, diatrizoate, and iomeprol) expressed some cytotoxicity over the control without any disinfection, and induced higher cytotoxicity when chlorinated. Only iohexol enhanced genotoxicity compared to the chlorinated source water.展开更多
Benzophenone-type UV filters are a group of compounds widely used to protect human skin from damage of UV irradiation. Benzophenone-4(BP-4) was targeted to explore its transformation behaviors during chlorination di...Benzophenone-type UV filters are a group of compounds widely used to protect human skin from damage of UV irradiation. Benzophenone-4(BP-4) was targeted to explore its transformation behaviors during chlorination disinfection treatment in the presence of iodide ions. With the help of ultra performance liquid phase chromatograph and high-resolution quadrupole time-of-flight mass spectrometer, totally fifteen halogenated products were identified, and five out of them were iodinated products. The transformation mechanisms of BP-4 involved electrophilic substitution generating mono-or di-halogenated products,which would be oxidized into esters and further hydrolyzed into phenolic derivatives. The desulfonation and decarboxylation were observed in chlorination system either. Obeying the transformation pathways, five iodinated products formed. The p H conditions of chlorination system determined the reaction types of transformation and corresponding species of products. The more important was that, the acute toxicity had significant increase after chlorination treatment on BP-4, especially in the presence of iodide ions. When the chlorination treatment was performed on ambient water spiked with BP-4 and iodide ions,iodinated by-products could be detected.展开更多
基金supported by the National Natural Science Foundation of China (Nos.22206050,22025601,21976133 and 52270047)the National Key Research and Development Program of China (No.2019YFC1805202)the State Key Laboratory of Pollution Control and Resource Reuse Foundation (No.PCRRK20014)。
文摘Permanganate/sulfite(Mn(VII)/S(IV))process is a promising pre-oxidation technology for sequestering the emerging organic contaminants in drinking water treatment plant.Iopamidol(IPM),a representative of iodinated X-ray contrast media,has been widely detected in water sources and has the risk of forming iodinated disinfection byproducts(I-DBPs)in water treatment system.In this study,we investigated the evolution of iodine species during the IPM degradation by the Mn(VII)/S(IV)process and its effect on the subsequent formation of I-DBPs during chlorination at pH 7.0 and 8.0.IPM could be effectively degraded in the Mn(VII)/S(IV)process at environmentally relevant pH(pH 7.0 and 8.0).The results of quenching and competitive oxidation kinetic experiments revealed that SO^(·-)_(4)was the major reactive oxidizing species contributing to the degradation of IPM whereas the contributions of HO·and reactive manganese species were negligible in the Mn(VII)/S(IV)process.I–and IO–3were generated while no HOI was detected during the degradation of IPM in the Mn(VII)/S(IV)process.The effects of IPM oxidation by Mn(VII)/S(IV)on the subsequent formation of chlorinated disinfection by-products(Cl-DBPs)during chlorination were related to the category of Cl-DBPs.The pre-oxidation of IPM by Mn(VII)/S(IV)resulted in the generation of I-DBPs during the disinfection process although no I-DBPs were detected if no pre-oxidation was applied.The finding of this study suggested that attention should be paid to the toxicity of DBPs when water containing iodinated organic contaminants is treated by Mn(VII)/S(IV)process or other pre-oxidation technologies.
基金support from the European Union 7th R&D Framework Programme (FP7/2007-2013) under grant agreement 274379 (Marie Curie IOF)the COFUND Programme of the Marie Curie Actions of the EU's FP7 (2014 BP_B00064)financially supported by the Government of Catalonia (Consolidated Research Groups 2014 SGR 418-Water and Soil Quality Unit and 2014 SGR 291-ICRA)
文摘Iodine containing disinfection by-products(I-DBPs) and haloacetaldehydes(HALs) are emerging disinfection by-product(DBP) classes of concern. The former due to its increased potential toxicity and the latter because it was found to be the third most relevant DBP class in mass in a U.S. nationwide drinking water study. These DBP classes have been scarcely investigated, and this work was performed to further explore their formation in drinking water under chlorination and chloramination scenarios. In order to do this, iodo-trihalomethanes(I-THMs),iodo-haloacetic acids(I-HAAs) and selected HALs(mono-HALs and di-HALs species, including iodoacetaldehyde) were investigated in DBP mixtures generated after chlorination and chloramination of different water matrices containing different levels of bromide and iodide in laboratory controlled reactions. Results confirmed the enhancement of I-DBP formation in the presence of monochloramine. While I-THMs and I-HAAs contributed almost equally to total I-DBP concentrations in chlorinated water, I-THMs contributed the most to total I-DBP levels in the case of chloraminated water. The most abundant and common I-THM species generated were bromochloroiodomethane, dichloroiodomethane, and chlorodiiodomethane. Iodoacetic acid and chloroiodoacetic acid contributed the most to the total I-HAA concentrations measured in the investigated disinfected water. As for the studied HALs, dihalogenated species were the compounds that predominantly formed under both investigated treatments.
基金supported by the National Major Science and Technology Project of China (No.2015ZX07406-004)
文摘The comprehensive control efficiency for the formation potentials(FPs) of a range of regulated and unregulated halogenated disinfection by-products(DBPs)(including carbonaceous DBPs(C-DBPs), nitrogenous DBPs(N-DBPs), and iodinated DBPs(I-DBPs)) with the multiple drinking water treatment processes, including pre-ozonation, conventional treatment(coagulation–sedimentation, pre-sand filtration), ozone-biological activated carbon(O_3-BAC) advanced treatment, and post-sand filtration, was investigated. The potential toxic risks of DBPs by combing their FPs and toxicity values were also evaluated.The results showed that the multiple drinking water treatment processes had superior performance in removing organic/inorganic precursors and reducing the formation of a range of halogenated DBPs. Therein, ozonation significantly removed bromide and iodide,and thus reduced the formation of brominated and iodinated DBPs. The removal of organic carbon and nitrogen precursors by the conventional treatment processes was substantially improved by O_3-BAC advanced treatment, and thus prevented the formation of chlorinated C-DBPs and N-DBPs. However, BAC filtration leads to the increased formation of brominated C-DBPs and N-DBPs due to the increase of bromide/DOC and bromide/DON.After the whole multiple treatment processes, the rank order for integrated toxic risk values caused by these halogenated DBPs was haloacetonitriles(HANs)》haloacetamides(HAMs) 〉haloacetic acids(HAAs) 〉 trihalomethanes(THMs) 〉 halonitromethanes(HNMs) 》I-DBPs(I-HAMs and I-THMs). I-DBPs failed to cause high integrated toxic risk because of their very low FPs. The significant higher integrated toxic risk value caused by HANs than other halogenated DBPs cannot be ignored.
基金supported by grant numbers NSF1124865 (SDR and SED)NSF1124844 (MJP)+1 种基金NIH T32 ES 007326 (CHJ)NIH T32 ES 007015 (CHJ)
文摘The presence of iodinated X-ray contrast media(ICM) in source waters is of high concern to public health because of their potential to generate highly toxic disinfection by-products(DBPs). The objective of this study was to determine the impact of ICM in source waters and the type of disinfectant on the overall toxicity of DBP mixtures and to determine which ICM and reaction conditions give rise to toxic by-products. Source waters collected from Akron,OH were treated with five different ICMs, including iopamidol, iopromide, iohexol,diatrizoate and iomeprol, with or without chlorine or chloramine disinfection. The reaction product mixtures were concentrated with XAD resins and the mammalian cell cytotoxicity and genotoxicity of the reaction mixture concentrates was measured. Water containing iopamidol generated an enhanced level of mammalian cell cytotoxicity and genotoxicity after disinfection. While chlorine disinfection with iopamidol resulted in the highest cytotoxicity overall, the relative iopamidol-mediated increase in toxicity was greater when chloramine was used as the disinfectant compared with chlorine. Four other ICMs(iopromide, iohexol, diatrizoate, and iomeprol) expressed some cytotoxicity over the control without any disinfection, and induced higher cytotoxicity when chlorinated. Only iohexol enhanced genotoxicity compared to the chlorinated source water.
基金supported by the National Natural Science Foundation of China (Nos.21577154, 21377143, 21590814, and 21402192)the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB14040201)
文摘Benzophenone-type UV filters are a group of compounds widely used to protect human skin from damage of UV irradiation. Benzophenone-4(BP-4) was targeted to explore its transformation behaviors during chlorination disinfection treatment in the presence of iodide ions. With the help of ultra performance liquid phase chromatograph and high-resolution quadrupole time-of-flight mass spectrometer, totally fifteen halogenated products were identified, and five out of them were iodinated products. The transformation mechanisms of BP-4 involved electrophilic substitution generating mono-or di-halogenated products,which would be oxidized into esters and further hydrolyzed into phenolic derivatives. The desulfonation and decarboxylation were observed in chlorination system either. Obeying the transformation pathways, five iodinated products formed. The p H conditions of chlorination system determined the reaction types of transformation and corresponding species of products. The more important was that, the acute toxicity had significant increase after chlorination treatment on BP-4, especially in the presence of iodide ions. When the chlorination treatment was performed on ambient water spiked with BP-4 and iodide ions,iodinated by-products could be detected.