The curve of ion exchange ratio(%) pH of the interaction between suspended particles with Cd(II) in the Yellow River was studied. The effects of lysine on this curve have been also investigated. The results showed th...The curve of ion exchange ratio(%) pH of the interaction between suspended particles with Cd(II) in the Yellow River was studied. The effects of lysine on this curve have been also investigated. The results showed that (1) Cadmium in Cd(OH) + form in the suspended particles exchanges with the cations. The exchange ratio of Cd 2+ is nearly at its greatest value in the range of pH (8.0—8.5) in natural aquatic system; (2) Ion exchange ratio decreases as the concentration of Cd 2+ raises from 8.9×10 -6 mol/L to 2×8.9×10 -6 mol/L; (3) At the lysine concentration of 6 8×10 -6 mol/L, it can promote the ion exchange ratio; (4) Adsorption of the suspended particles to cadmium is weaker in seawater and Jin Sha River than in the Yellow River.展开更多
In this work,the structure,viscosity and ion-exchange process of Na_(2)O-MgO-Al_(2)O_(3)-SiO_(2) glasses with different Al_(2)O_(3)/SiO_(2) molar ratios were investigated.The results showed that,with increasing Al_(2)...In this work,the structure,viscosity and ion-exchange process of Na_(2)O-MgO-Al_(2)O_(3)-SiO_(2) glasses with different Al_(2)O_(3)/SiO_(2) molar ratios were investigated.The results showed that,with increasing Al_(2)O_(3)/SiO_(2) ratio,the simple structural units Q_(1) and Q_(2) transformed into highly aggregated structural units Q_(3) and Q_(4),indicating the increase of polymerization degree of glass network.Meanwhile,the coefficient of thermal expansion decreased from 9.23×10^(-6)℃^(-1) to 8.88×10^(-6)℃^(-1).The characteristic temperatures such as melting,forming,softening and glass transition temperatures increased with the increase of Al_(2)O_(3)/SiO_(2) ratio,while the glasses working temperature range became narrow.The increasing Al_(2)O_(3)/SiO_(2) ratio and prolonging ion-exchange time enhanced the surface compressive stress(CS)and depth of stress layer(DOL).However,the increase of ion exchange temperature increased the DOL and decreased the CS affected by stress relaxation.There was a good linear relationship between stress relaxation and surface compressive stress.Chemical strengthening significantly improved the hardness of glasses,which reached the maximum value of(622.1±10)MPa for sample with Al_(2)O_(3)/SiO_(2) ratio of 0.27 after heat treated at 410℃for 2 h.展开更多
In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterpart...In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.展开更多
Defective layered Mn-based materials were synthesized by Li/Na ion exchange to improve their electrochemical activity and Coulombic efficiency.The annealing temperature of the Na precursors was important to control th...Defective layered Mn-based materials were synthesized by Li/Na ion exchange to improve their electrochemical activity and Coulombic efficiency.The annealing temperature of the Na precursors was important to control the P3-P2 phase transition,which directly affected the structure and electrochemical characteristics of the final products obtained by ion exchange.The O3-Li_(0.78)[Li_(0.25)Fe_(0.075)Mn_(0.675)]O_(δ) cathode made from a P3-type precursor calcined at 700℃ was analyzed using X-ray photoelectron spectrometry and electron paramagnetic resonance.The results showed that the presence of abundant trivalent manganese and defects resulted in a discharge capacity of 230 mAh/g with an initial Coulombic efficiency of about 109%.Afterward,galvanostatic intermittent titration was performed to examine the Li^(+) ion diffusion coefficients,which affected the reversible capacity.First principles calculations suggested that the charge redistribution induced by oxygen vacancies(OV_(s))greatly affected the local Mn coordination environment and enhanced the structural activity.Moreover,the Li-deficient cathode was a perfect match for the pre-lithiation anode,providing a novel approach to improve the initial Coulombic efficiency and activity of Mn-based materials in the commercial application.展开更多
Based on the difference in tendency to polymerize between tungsten and molybdenum, a new method using D309 resin was propounded. The batch tests indicate that the optimum pH value and contact time for the separation a...Based on the difference in tendency to polymerize between tungsten and molybdenum, a new method using D309 resin was propounded. The batch tests indicate that the optimum pH value and contact time for the separation are 7.0 and 4 h respectively, the maxium separation factor of W and Mo is 9.29. And the experimental resules show that isothermal absorbing tungsten and molybdenum belongs to Langmuir model and Freundlich model respectively, and the absorbing kinetics for tungsten is controlled by intra-particle diffusion. With a solution containing 70 g/L WO3 and 28.97 g/L Mo, the effluent with a mass ratio of Mo to WO3 of 76 and the eluate with a mass ratio of WO3 to Mo of 53.33 are obtained after column test.展开更多
Aim To prepare the prolonged-released microspheres of mefformin hydrochloride. Methods Ion-exchange resin-drug mefformin hydrochloride complexes were prepared as core materials, and followed by coating using ethylcell...Aim To prepare the prolonged-released microspheres of mefformin hydrochloride. Methods Ion-exchange resin-drug mefformin hydrochloride complexes were prepared as core materials, and followed by coating using ethylcellulose (EC) by the emulsion solvent diffusion technique. The release rate of mefformin from the microcapsules was highly dependent on the encapsulating formulation, thus being used as an index for formulation screening. Orthogonal experiments were performed to optimize the coating formulation. Results The final chosen formulation for coating of mefformin microcapsules were as follows: ( 1 ) the ratio of EC (20cps) to EC (45cps) was 50:50; (2) the ratio of plasticizer to coating materials was 20% ;and (3) the ratio of resin-mefformin complexes to coating materials was 5 : 1. Conclusion The prolonged release microspheres of mefformin hydrochloride were successfully prepared.展开更多
Ion exchanger colorimetry for scandium in the form of ternary color system “Sc(Ⅲ) CPA pc Ac” was developed. The influences of types and grain sizes of resin, adsorption modes and the acidity on the determinatio...Ion exchanger colorimetry for scandium in the form of ternary color system “Sc(Ⅲ) CPA pc Ac” was developed. The influences of types and grain sizes of resin, adsorption modes and the acidity on the determination were studied systematically, and the optimum operating conditions and the allowable amounts of foreign ions were determined. In comparison with the ordinary solution colorimetry, both of the sensitivity and the selectivity of this ion exchanger colorimetry are improved obviously. The preliminary uses of this method to the determination of Sc(Ⅲ) in two synthetic samples were satisfied.展开更多
Hydroxyl release of red soil and latosol surfaces was quantitatively measuredusing a self-made constant pH automated titration instrument, to study the changes of hydroxylrelease with different added selenite amounts ...Hydroxyl release of red soil and latosol surfaces was quantitatively measuredusing a self-made constant pH automated titration instrument, to study the changes of hydroxylrelease with different added selenite amounts and pH levels, and to study the effects ofelectrolytes on hydroxyl release. Hydroxyl release increased with the selenite concentration, with arapid increase at a low selenite concentration while slowing down at a high concentration. The pHwhere maximum of hydroxyl release appeared was not constant, shifting to a lower valus withincreasing selenite concentration. Hydroxyl release decreased with increasing electrolyteconcentration, and the decrease was very rapid at a low electrolyte concentration but slow at a highelectrolyte concentration. For NaClO_4, NaCl and Na_2SO_4, hydroxyl release was in the order ofNaClO_4 > NaCl >> Na_2SO_4, and the difference was very significant. But for NaCl, KCl and CaCl_2,the order of hydroxyl release was NaCl > KCl > CaCl_2, and the difference was smaller. The amount ofhydroxyl release from Xuwen latosol was greater than that from Jinxian red soil. Hydroxyl releaseexisted in a wider range of pH with Xuwen latosol than with Jinxian red soil, due to theirdifference in soil properties. However, both soils had similar curves of hydroxyl release,indicating the common characteristics of variable charge soils.展开更多
The removal of tungsten(W)and vanadium(V)from molybdate solutions was studied using the poly hydroxyl chelating resin D403in batch and column experiments.The batch experiments indicated that tungsten and vanadium coul...The removal of tungsten(W)and vanadium(V)from molybdate solutions was studied using the poly hydroxyl chelating resin D403in batch and column experiments.The batch experiments indicated that tungsten and vanadium could be preferentially adsorbed by the D403resin for4h in molybdate solution at a pH of approximately9.25.Separation factors,αVMo andαWMo,wereabove45and18,respectively,when the molar ratios of Mo/V and Mo/W in the solution exceeded40.Elution tests illustrated that vanadium and tungsten could be easily eluted from the resin with1mol/L sodium hydroxide solution in only1h.To further explore the sorption mechanism of the resin,the experimental equilibrium isotherm data of the three metals fitted well with the Freundlich model.The column experiments confirmed the adaptability of the D403resin in the production of sodium molybdate with a removal rate of tungsten surpassing90%and that of vanadium of99.4%.展开更多
The adsorption behavior of ion exchange resin D301 in the extraction of hexavalent molybdenum from high acidic leach solution was investigated. SEM, EDS and Raman spectra analyses were applied to studying the adsorpti...The adsorption behavior of ion exchange resin D301 in the extraction of hexavalent molybdenum from high acidic leach solution was investigated. SEM, EDS and Raman spectra analyses were applied to studying the adsorption capacity, reaction kinetics and possible adsorption mechanism in detail. Results showed that the adsorption capacity of D301 resin for molybdenum from high acidic leach solution was up to 463.63 mg/g. Results of the kinetic analysis indicated that the adsorption process was controlled by the particle diffusion with the activation energy 25.47 k J/mol(0.9-1.2 mm) and 20.38 k J/mol(0.6-0.9 mm). Furthermore, the molybdenum loaded on the resin could be eluted by using 2 mol/L ammonia hydroxide solution. Besides, dynamic continuous column experiments verified direct extraction of molybdenum from acidic leach solutions by ion exchange resin D301 and the upstream flow improved dynamic continuous absorption.展开更多
The study examined the adsorption of Pb(II) ions from aqueous solution onto chitosan, chitosan-GLA and chitosan-alginate beads. Several important parameters influencing the adsorption of Pb(II) ions such as initia...The study examined the adsorption of Pb(II) ions from aqueous solution onto chitosan, chitosan-GLA and chitosan-alginate beads. Several important parameters influencing the adsorption of Pb(II) ions such as initial pH, adsorbent dosage and different initial concentration of Pb(II) ions were evaluated. The mechanism involved during the adsorption process was explored based on ion exchange study and using spectroscopic techniques. The adsorption capacities obtained based on non–linear Langmuir isotherm for chitosan, chitosan-GLA and chitosan-alginate beads in single metal system were 34.98, 14.24 and 60.27 mg/g, respectively. However, the adsorption capacity of Pb(II) ions were reduced in the binary metal system due to the competitive adsorption between Pb(II) and Cu(II) ions. Based on the ion exchange study, the release of Ca2+, Mg2+, K+ and Na+ ions played an important role in the adsorption of Pb(II) ions by all three adsorbents but only at lower concentrations of Pb(II) ions. Infrared spectra showed that the binding between Pb(II) ions and the adsorbents involved mostly the nitrogen and oxygen atoms. All three adsorbents showed satisfactory adsorption capacities and can be considered as an efficient adsorbent for the removal of Pb(II) ions from aqueous solutions.展开更多
Our previous studies have reported the presence of "chain delivery" effects of protein adsorption onto ion exchangers with polymer-grafted ion-exchange groups, such as dextran-grafted and poly(ethylenimine)-...Our previous studies have reported the presence of "chain delivery" effects of protein adsorption onto ion exchangers with polymer-grafted ion-exchange groups, such as dextran-grafted and poly(ethylenimine)-modified Sepharose gels. However, it is unclear if the "chain delivery" occurs on affinity adsorption with specific interactions. This work is designed to address this issue. A dextran-grafted Sepharose gel was prepared, and then the matrix was modified using diethylaminoethyl, a typical ion-exchange group, or octapeptide(FYCHWQDE), an affinity ligand for human immunoglobulin G(h Ig G) to prepare ion-exchange or affinity adsorbents, respectively.Results of h Ig G adsorption showed that the uptake rate represented by the effective diffusivity of h Ig G onto the dextran-grafted ion exchangers was obviously enhanced by the dextran grafting, indicating the presence of"chain delivery" of the bound proteins on the charged groups on the dextran chains. By contrast, the effective diffusivity of h Ig G changed little as ligand density increased on the dextran-grafted FYCHWQDE adsorbents.Their adsorption capacities decreased and effective diffusivities were not accelerated by the dextran grafting.Thus, this work clarified that grafted dextran could not accelerate h Ig G uptake rate on the affinity resins, or in other words, chain delivery did not occur on the specific interaction-based affinity adsorption.展开更多
Ce (Ⅳ) nitrato complexes were adsorbed on two anion exchangers based on polyvinyl pyridine (PVP) and quatemized PVP incorporated into porous silica matrix. The effect of nitric acid concentration (0.5~6 mol...Ce (Ⅳ) nitrato complexes were adsorbed on two anion exchangers based on polyvinyl pyridine (PVP) and quatemized PVP incorporated into porous silica matrix. The effect of nitric acid concentration (0.5~6 mol·L^-1) and temperature (278 ~318 K) on Ce( Ⅳ ) sorption efficiency was investigated. Sorption increased with increasing nitric acid concentration, indicating that [Ce(NO3)6]^2- complex is the main adsorbed Ce(Ⅳ) species. Oxidation of sorbents by adsorbed Ce ( Ⅳ ) species resulting in Ce ( Ⅲ ) release to the solution was observed. Pyridine based anion exchangers exhibited higher oxidation stability compared to the commercial strong base anion exchanger. Ce( Ⅳ ) reduction was temperature dependent and obeyed pseudo-first-order reaction kinetics. Column separation of Ce ( Ⅳ ) from La ( Ⅲ ) and Y ( Ⅲ ) was carried out from 6 mol·L^-1 nitric acid with PVP based anion exchanger. Reasonable Ce (Ⅳ) breakthrough capacity (0.7 mol·kg^-1 PVP) was achieved. No remarkable decrease of capacity was observed within 3 consequent runs. In contrast, Ce (Ⅲ) leakage due to reduction decreased and breakthrough capacity slightly increased. This effect was more pronounced with increasing temperature. Regeneration with 0.1 mol·L^- 1 nitric acid was successful (recovery 100% ± 4% ) and Ce solution of high purity ( 〉 99.97% ) with respect to La and Y content was gained.展开更多
In this paper, humic acid (HA) was ultra-filtered into different molecular weight sections and was characterized by multielement analysis, UV254/TOC, FT-IR and three-dimensional fluorescence spectrometric. Since hum...In this paper, humic acid (HA) was ultra-filtered into different molecular weight sections and was characterized by multielement analysis, UV254/TOC, FT-IR and three-dimensional fluorescence spectrometric. Since humic acids of different molecular weights have different hydrophilic and molecular size, the maximum adsorption capacity of basic ion exchange resins appears on the humic acid whose molecular weight ranges from 6000 to 10,000 Da.展开更多
The present study dealt with the mechanism of competitive adsorption of Sb(Ⅲ)and Fe(Ⅱ)ions from a copper-containing aqueous solution on Purolite S957,a commercially available cationic ion-exchange adsorbent.Experime...The present study dealt with the mechanism of competitive adsorption of Sb(Ⅲ)and Fe(Ⅱ)ions from a copper-containing aqueous solution on Purolite S957,a commercially available cationic ion-exchange adsorbent.Experiments were conducted using aqueous copper sulfate solutions containing either single or conjoint ions,using both sedentary and batch adsorption techniques to ascertain the sensitivity of the adsorption process to variation in p H,mass of resin,contact time,and temperature as well as establishing the optimal range of variables for maximum ion removal.The data from single ion adsorption tests were fitted by non-linear regression techniques to Henry,Langmuir,Freundlich,Temkin,and Dubinin–Radushkevich isotherm models.Freundlich isotherm for Sb(Ⅲ)and Freundlich and Henry models for Fe(Ⅱ)solutions best express the adsorption equilibrium data;while for binary ion electrolytes,the extended Freundlich model fitted the data satisfactorily.The kinetic model adequately describing adsorption was shown to be the pseudo-first-order,underscoring the dominant role of physical adsorption playing in the process.Thermodynamic parameters for the adsorption process reveal differences in the Sb(Ⅲ)adsorption mechanism from single ion and Sb(Ⅲ)-Fe(Ⅱ)containing electrolytes.The adsorption of Sb(Ⅲ)alone is endothermic,whereas the process becomes exothermic in the Sb(Ⅲ)-Fe(Ⅱ)system.展开更多
A self-made constant pH automated titration instrument was used to study thekinetics of hydroxyl release during selenite reacting with variable charge soils. The rate ofhydroxyl release was very rapid at the first sev...A self-made constant pH automated titration instrument was used to study thekinetics of hydroxyl release during selenite reacting with variable charge soils. The rate ofhydroxyl release was very rapid at the first several minutes, then gradually slowed down, and atlast did not change any more. The experimental data was well fitted by the Langmuir kineticequation, arid with increasing selenite concentration or decreasing solution pH, the reaction lastedlonger, the maximum of hydroxyl release (x_m) increased, and the binding constant (k) decreased.The time of hydroxyl release with Xuwen latosol was much longer than that with Jinxian red soil.展开更多
A novel open-framework ecomaterial silicotitanate (Na_4Ti_4Si_3O_(10)) wassynthesized by a combination of solgel and hydrothermal methods. The investigation on ion exchangeproperties shows that Na_4Ti_4Si_3O_(10) exhi...A novel open-framework ecomaterial silicotitanate (Na_4Ti_4Si_3O_(10)) wassynthesized by a combination of solgel and hydrothermal methods. The investigation on ion exchangeproperties shows that Na_4Ti_4Si_3O_(10) exhibits high ad-sorption for cesium, i.e., K_d is as highas 60 000 mL/g in neutral solution. The crystal structure of Na_4Ti_4Si_3O_(10) was characterized byX-ray difiraction (XRD), scanning electronic microscope (SEM), transmission electron microscope(TEM), Raman spectrum, differential thermal and thermogravimetric analysis (DTA/TGA), inductivelycoupled plasma (ICP), and X fluorescence analysis. The compound is tetragonal, P4_2, a=b = 0.781 10nm, c = 1.196 45 nm, alpha =beta = gamma = 90 deg, Z = 4, and R^a = 0.041; Na_4Ti_4Si_3O_(10) has athree dimensional framework consisting of Ti-O octahedral clusters and Si-O tetrahedra. The resultsshow that Na_4Ti_4Si_3O_(10) has good chemical stability, thermal stability, and high cesium ionexchange capacity in the whole pH range.展开更多
There are numerous impurities in wet-process phosphoric acid,among which manganese is one of detrimental metallic impurities,and it causes striking negative effects on the industrial phosphoric acid production and dow...There are numerous impurities in wet-process phosphoric acid,among which manganese is one of detrimental metallic impurities,and it causes striking negative effects on the industrial phosphoric acid production and downstream commodity.This article investigated the adsorption behavior of manganese from phosphoric acid employing Sinco-430 cationic ion-exchange resin.Resorting FT-IR and XPS characterizations,the adsorption mechanism was proved to be that manganese was combined with sulfonic acid group.Several crucial parameters such as temperature,phosphoric acid content and resin dose were studied to optimize adsorption efficiency.Through optimization,removal percentage and sorption capacity of manganese reached 53.12 wt%,28.34 mg·g^-1,respectively.Pseudo-2nd-order kinetic model simulated kinetics data best and the activation energy was evaluated as 6.34 kJ·mol^-1 for the sorption reaction of manganese.In addition,the global adsorption rate was first controlled by film diffusion process and second determined by pore diffusion process.It was found that the resin could adsorb up to 50.24 mg·g^-1 for manganese.Equilibrium studies showed that Toth adsorption isotherm model fitted best,followed by Temkin and Langmuir adsorption isotherm models.Thermodynamic analysis showed that manganese adsorption was an endothermic process with enhanced randomness and spontaneity.展开更多
As a two dimensional(2D)visible‐light‐responsive semiconductor photocatalyst,the photoreactivity of Bi2WO6 is not high enough for practical application owing to its limited response to visible light and rapid recomb...As a two dimensional(2D)visible‐light‐responsive semiconductor photocatalyst,the photoreactivity of Bi2WO6 is not high enough for practical application owing to its limited response to visible light and rapid recombination of photogenerated electron‐hole pairs.In this paper,2D core‐shell structured Bi2WO6@Bi2S3 nanoplates were prepared by calcination of a mixture of Bi2WO6(1.3 g)and a certain amount of Na2S·9H2O(0–3.0 g)at 350°C for 2 h.The reactivity of the resulting photocatalyst materials was evaluated by photocatalytic degradation of Brilliant Red X‐3B(X3B),an anionic dye,under visible light irradiation(?>420 nm).As the amount of Na2S·9H2O was increased from 0 to 1.5 g,the degradation rate constant of X3B sharply increased from 0.40×10?3 to 6.6×10?3 min?1.The enhanced photocatalytic activity of Bi2WO6@Bi2S3 was attributed to the photosensitization of Bi2S3,which greatly extended the light‐responsive range from the visible to the NIR,and the formation of a heterojunction,which retarded the recombination rate of photogenerated electron‐hole pairs.However,further increases in the amount of Na2S·9H2O(from 1.5 to 3.0 g)resulted in a decrease of the photocatalytic activity of the Bi2WO6@Bi2S3 nanoplates owing to the formation of a photo‐inactive NaBiS2 layer covering the Bi2WO6 surface.展开更多
The esterification reactions of lactic acid with isobutanol and n-butanol have been studied in the presence of acid ion-exchange resin Weblyst D009. The influences of catalyst loading, stirrer speed, catalyst particle...The esterification reactions of lactic acid with isobutanol and n-butanol have been studied in the presence of acid ion-exchange resin Weblyst D009. The influences of catalyst loading, stirrer speed, catalyst particle size, initial reactant molar ratio and temperature on the reaction rate have been examined. Experimental kinetic data were correlated by using the pseudo-homogeneous, Langnluir-Hinshelwood and Eley-Rideal models. Nonideality of the liquid phase was taken into account by using activities instead of molar fractions. The activity coefficients were calculated according to the group contribution method UNIFAC. Provided that the nonideality of the liquid is taken into account, the esterification kinetics of lactic acid with isobutanol and n-butanol catalyzed by the acid ion-exchange resin can be described using all threemodels with reasonable errors.展开更多
文摘The curve of ion exchange ratio(%) pH of the interaction between suspended particles with Cd(II) in the Yellow River was studied. The effects of lysine on this curve have been also investigated. The results showed that (1) Cadmium in Cd(OH) + form in the suspended particles exchanges with the cations. The exchange ratio of Cd 2+ is nearly at its greatest value in the range of pH (8.0—8.5) in natural aquatic system; (2) Ion exchange ratio decreases as the concentration of Cd 2+ raises from 8.9×10 -6 mol/L to 2×8.9×10 -6 mol/L; (3) At the lysine concentration of 6 8×10 -6 mol/L, it can promote the ion exchange ratio; (4) Adsorption of the suspended particles to cadmium is weaker in seawater and Jin Sha River than in the Yellow River.
基金Funded by National Natural Science Foundation of China(Nos.52172019 and 52072148)Shandong Provincial Youth Innovation Team Development Plan of Colleges and Universities(No.2022K1100)。
文摘In this work,the structure,viscosity and ion-exchange process of Na_(2)O-MgO-Al_(2)O_(3)-SiO_(2) glasses with different Al_(2)O_(3)/SiO_(2) molar ratios were investigated.The results showed that,with increasing Al_(2)O_(3)/SiO_(2) ratio,the simple structural units Q_(1) and Q_(2) transformed into highly aggregated structural units Q_(3) and Q_(4),indicating the increase of polymerization degree of glass network.Meanwhile,the coefficient of thermal expansion decreased from 9.23×10^(-6)℃^(-1) to 8.88×10^(-6)℃^(-1).The characteristic temperatures such as melting,forming,softening and glass transition temperatures increased with the increase of Al_(2)O_(3)/SiO_(2) ratio,while the glasses working temperature range became narrow.The increasing Al_(2)O_(3)/SiO_(2) ratio and prolonging ion-exchange time enhanced the surface compressive stress(CS)and depth of stress layer(DOL).However,the increase of ion exchange temperature increased the DOL and decreased the CS affected by stress relaxation.There was a good linear relationship between stress relaxation and surface compressive stress.Chemical strengthening significantly improved the hardness of glasses,which reached the maximum value of(622.1±10)MPa for sample with Al_(2)O_(3)/SiO_(2) ratio of 0.27 after heat treated at 410℃for 2 h.
基金supported by the Teli Fellowship from Beijing Institute of Technology,the National Natural Science Foundation of China(Nos.52303366,22173109).
文摘In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.
基金The Beijing Municipal Education Commission(KZ201910005003)supported this work。
文摘Defective layered Mn-based materials were synthesized by Li/Na ion exchange to improve their electrochemical activity and Coulombic efficiency.The annealing temperature of the Na precursors was important to control the P3-P2 phase transition,which directly affected the structure and electrochemical characteristics of the final products obtained by ion exchange.The O3-Li_(0.78)[Li_(0.25)Fe_(0.075)Mn_(0.675)]O_(δ) cathode made from a P3-type precursor calcined at 700℃ was analyzed using X-ray photoelectron spectrometry and electron paramagnetic resonance.The results showed that the presence of abundant trivalent manganese and defects resulted in a discharge capacity of 230 mAh/g with an initial Coulombic efficiency of about 109%.Afterward,galvanostatic intermittent titration was performed to examine the Li^(+) ion diffusion coefficients,which affected the reversible capacity.First principles calculations suggested that the charge redistribution induced by oxygen vacancies(OV_(s))greatly affected the local Mn coordination environment and enhanced the structural activity.Moreover,the Li-deficient cathode was a perfect match for the pre-lithiation anode,providing a novel approach to improve the initial Coulombic efficiency and activity of Mn-based materials in the commercial application.
基金Project(51174232)supported by the National Natural Science Foundation of China
文摘Based on the difference in tendency to polymerize between tungsten and molybdenum, a new method using D309 resin was propounded. The batch tests indicate that the optimum pH value and contact time for the separation are 7.0 and 4 h respectively, the maxium separation factor of W and Mo is 9.29. And the experimental resules show that isothermal absorbing tungsten and molybdenum belongs to Langmuir model and Freundlich model respectively, and the absorbing kinetics for tungsten is controlled by intra-particle diffusion. With a solution containing 70 g/L WO3 and 28.97 g/L Mo, the effluent with a mass ratio of Mo to WO3 of 76 and the eluate with a mass ratio of WO3 to Mo of 53.33 are obtained after column test.
文摘Aim To prepare the prolonged-released microspheres of mefformin hydrochloride. Methods Ion-exchange resin-drug mefformin hydrochloride complexes were prepared as core materials, and followed by coating using ethylcellulose (EC) by the emulsion solvent diffusion technique. The release rate of mefformin from the microcapsules was highly dependent on the encapsulating formulation, thus being used as an index for formulation screening. Orthogonal experiments were performed to optimize the coating formulation. Results The final chosen formulation for coating of mefformin microcapsules were as follows: ( 1 ) the ratio of EC (20cps) to EC (45cps) was 50:50; (2) the ratio of plasticizer to coating materials was 20% ;and (3) the ratio of resin-mefformin complexes to coating materials was 5 : 1. Conclusion The prolonged release microspheres of mefformin hydrochloride were successfully prepared.
文摘Ion exchanger colorimetry for scandium in the form of ternary color system “Sc(Ⅲ) CPA pc Ac” was developed. The influences of types and grain sizes of resin, adsorption modes and the acidity on the determination were studied systematically, and the optimum operating conditions and the allowable amounts of foreign ions were determined. In comparison with the ordinary solution colorimetry, both of the sensitivity and the selectivity of this ion exchanger colorimetry are improved obviously. The preliminary uses of this method to the determination of Sc(Ⅲ) in two synthetic samples were satisfied.
基金Project supported by the National Natural Science Foundation of China(Nos.49971046 and 49831005).
文摘Hydroxyl release of red soil and latosol surfaces was quantitatively measuredusing a self-made constant pH automated titration instrument, to study the changes of hydroxylrelease with different added selenite amounts and pH levels, and to study the effects ofelectrolytes on hydroxyl release. Hydroxyl release increased with the selenite concentration, with arapid increase at a low selenite concentration while slowing down at a high concentration. The pHwhere maximum of hydroxyl release appeared was not constant, shifting to a lower valus withincreasing selenite concentration. Hydroxyl release decreased with increasing electrolyteconcentration, and the decrease was very rapid at a low electrolyte concentration but slow at a highelectrolyte concentration. For NaClO_4, NaCl and Na_2SO_4, hydroxyl release was in the order ofNaClO_4 > NaCl >> Na_2SO_4, and the difference was very significant. But for NaCl, KCl and CaCl_2,the order of hydroxyl release was NaCl > KCl > CaCl_2, and the difference was smaller. The amount ofhydroxyl release from Xuwen latosol was greater than that from Jinxian red soil. Hydroxyl releaseexisted in a wider range of pH with Xuwen latosol than with Jinxian red soil, due to theirdifference in soil properties. However, both soils had similar curves of hydroxyl release,indicating the common characteristics of variable charge soils.
基金Project(2014CB643405)supported by the National Basic Research Program of China
文摘The removal of tungsten(W)and vanadium(V)from molybdate solutions was studied using the poly hydroxyl chelating resin D403in batch and column experiments.The batch experiments indicated that tungsten and vanadium could be preferentially adsorbed by the D403resin for4h in molybdate solution at a pH of approximately9.25.Separation factors,αVMo andαWMo,wereabove45and18,respectively,when the molar ratios of Mo/V and Mo/W in the solution exceeded40.Elution tests illustrated that vanadium and tungsten could be easily eluted from the resin with1mol/L sodium hydroxide solution in only1h.To further explore the sorption mechanism of the resin,the experimental equilibrium isotherm data of the three metals fitted well with the Freundlich model.The column experiments confirmed the adaptability of the D403resin in the production of sodium molybdate with a removal rate of tungsten surpassing90%and that of vanadium of99.4%.
基金Projects(21376251,21406233) supported by the National Natural Science Foundation of China
文摘The adsorption behavior of ion exchange resin D301 in the extraction of hexavalent molybdenum from high acidic leach solution was investigated. SEM, EDS and Raman spectra analyses were applied to studying the adsorption capacity, reaction kinetics and possible adsorption mechanism in detail. Results showed that the adsorption capacity of D301 resin for molybdenum from high acidic leach solution was up to 463.63 mg/g. Results of the kinetic analysis indicated that the adsorption process was controlled by the particle diffusion with the activation energy 25.47 k J/mol(0.9-1.2 mm) and 20.38 k J/mol(0.6-0.9 mm). Furthermore, the molybdenum loaded on the resin could be eluted by using 2 mol/L ammonia hydroxide solution. Besides, dynamic continuous column experiments verified direct extraction of molybdenum from acidic leach solutions by ion exchange resin D301 and the upstream flow improved dynamic continuous absorption.
基金the financial support under the Short Term Grant (No.304/PKIMIA/636065)
文摘The study examined the adsorption of Pb(II) ions from aqueous solution onto chitosan, chitosan-GLA and chitosan-alginate beads. Several important parameters influencing the adsorption of Pb(II) ions such as initial pH, adsorbent dosage and different initial concentration of Pb(II) ions were evaluated. The mechanism involved during the adsorption process was explored based on ion exchange study and using spectroscopic techniques. The adsorption capacities obtained based on non–linear Langmuir isotherm for chitosan, chitosan-GLA and chitosan-alginate beads in single metal system were 34.98, 14.24 and 60.27 mg/g, respectively. However, the adsorption capacity of Pb(II) ions were reduced in the binary metal system due to the competitive adsorption between Pb(II) and Cu(II) ions. Based on the ion exchange study, the release of Ca2+, Mg2+, K+ and Na+ ions played an important role in the adsorption of Pb(II) ions by all three adsorbents but only at lower concentrations of Pb(II) ions. Infrared spectra showed that the binding between Pb(II) ions and the adsorbents involved mostly the nitrogen and oxygen atoms. All three adsorbents showed satisfactory adsorption capacities and can be considered as an efficient adsorbent for the removal of Pb(II) ions from aqueous solutions.
基金Supported by the National Natural Science Foundation of China(21236005,21621004)
文摘Our previous studies have reported the presence of "chain delivery" effects of protein adsorption onto ion exchangers with polymer-grafted ion-exchange groups, such as dextran-grafted and poly(ethylenimine)-modified Sepharose gels. However, it is unclear if the "chain delivery" occurs on affinity adsorption with specific interactions. This work is designed to address this issue. A dextran-grafted Sepharose gel was prepared, and then the matrix was modified using diethylaminoethyl, a typical ion-exchange group, or octapeptide(FYCHWQDE), an affinity ligand for human immunoglobulin G(h Ig G) to prepare ion-exchange or affinity adsorbents, respectively.Results of h Ig G adsorption showed that the uptake rate represented by the effective diffusivity of h Ig G onto the dextran-grafted ion exchangers was obviously enhanced by the dextran grafting, indicating the presence of"chain delivery" of the bound proteins on the charged groups on the dextran chains. By contrast, the effective diffusivity of h Ig G changed little as ligand density increased on the dextran-grafted FYCHWQDE adsorbents.Their adsorption capacities decreased and effective diffusivities were not accelerated by the dextran grafting.Thus, this work clarified that grafted dextran could not accelerate h Ig G uptake rate on the affinity resins, or in other words, chain delivery did not occur on the specific interaction-based affinity adsorption.
基金Project supported bythe Japan Societyfor the Promotion of Science (JSPS)
文摘Ce (Ⅳ) nitrato complexes were adsorbed on two anion exchangers based on polyvinyl pyridine (PVP) and quatemized PVP incorporated into porous silica matrix. The effect of nitric acid concentration (0.5~6 mol·L^-1) and temperature (278 ~318 K) on Ce( Ⅳ ) sorption efficiency was investigated. Sorption increased with increasing nitric acid concentration, indicating that [Ce(NO3)6]^2- complex is the main adsorbed Ce(Ⅳ) species. Oxidation of sorbents by adsorbed Ce ( Ⅳ ) species resulting in Ce ( Ⅲ ) release to the solution was observed. Pyridine based anion exchangers exhibited higher oxidation stability compared to the commercial strong base anion exchanger. Ce( Ⅳ ) reduction was temperature dependent and obeyed pseudo-first-order reaction kinetics. Column separation of Ce ( Ⅳ ) from La ( Ⅲ ) and Y ( Ⅲ ) was carried out from 6 mol·L^-1 nitric acid with PVP based anion exchanger. Reasonable Ce (Ⅳ) breakthrough capacity (0.7 mol·kg^-1 PVP) was achieved. No remarkable decrease of capacity was observed within 3 consequent runs. In contrast, Ce (Ⅲ) leakage due to reduction decreased and breakthrough capacity slightly increased. This effect was more pronounced with increasing temperature. Regeneration with 0.1 mol·L^- 1 nitric acid was successful (recovery 100% ± 4% ) and Ce solution of high purity ( 〉 99.97% ) with respect to La and Y content was gained.
基金support provided by the National Nature Science Fund(No.50778088)China National Funds for Distinguished Young Scientists(No.50825802)Resources Special Subject of National High Technology Research & Development Project(863 project,No.2006AA06Z383),China.
文摘In this paper, humic acid (HA) was ultra-filtered into different molecular weight sections and was characterized by multielement analysis, UV254/TOC, FT-IR and three-dimensional fluorescence spectrometric. Since humic acids of different molecular weights have different hydrophilic and molecular size, the maximum adsorption capacity of basic ion exchange resins appears on the humic acid whose molecular weight ranges from 6000 to 10,000 Da.
文摘The present study dealt with the mechanism of competitive adsorption of Sb(Ⅲ)and Fe(Ⅱ)ions from a copper-containing aqueous solution on Purolite S957,a commercially available cationic ion-exchange adsorbent.Experiments were conducted using aqueous copper sulfate solutions containing either single or conjoint ions,using both sedentary and batch adsorption techniques to ascertain the sensitivity of the adsorption process to variation in p H,mass of resin,contact time,and temperature as well as establishing the optimal range of variables for maximum ion removal.The data from single ion adsorption tests were fitted by non-linear regression techniques to Henry,Langmuir,Freundlich,Temkin,and Dubinin–Radushkevich isotherm models.Freundlich isotherm for Sb(Ⅲ)and Freundlich and Henry models for Fe(Ⅱ)solutions best express the adsorption equilibrium data;while for binary ion electrolytes,the extended Freundlich model fitted the data satisfactorily.The kinetic model adequately describing adsorption was shown to be the pseudo-first-order,underscoring the dominant role of physical adsorption playing in the process.Thermodynamic parameters for the adsorption process reveal differences in the Sb(Ⅲ)adsorption mechanism from single ion and Sb(Ⅲ)-Fe(Ⅱ)containing electrolytes.The adsorption of Sb(Ⅲ)alone is endothermic,whereas the process becomes exothermic in the Sb(Ⅲ)-Fe(Ⅱ)system.
基金Project supported by the National Natural Science Foundation of China (Nos. 49971046 and 49831005).
文摘A self-made constant pH automated titration instrument was used to study thekinetics of hydroxyl release during selenite reacting with variable charge soils. The rate ofhydroxyl release was very rapid at the first several minutes, then gradually slowed down, and atlast did not change any more. The experimental data was well fitted by the Langmuir kineticequation, arid with increasing selenite concentration or decreasing solution pH, the reaction lastedlonger, the maximum of hydroxyl release (x_m) increased, and the binding constant (k) decreased.The time of hydroxyl release with Xuwen latosol was much longer than that with Jinxian red soil.
基金This work was financially supported by the Foundation for the Author of National Excellent Doctor Dissertation of China.
文摘A novel open-framework ecomaterial silicotitanate (Na_4Ti_4Si_3O_(10)) wassynthesized by a combination of solgel and hydrothermal methods. The investigation on ion exchangeproperties shows that Na_4Ti_4Si_3O_(10) exhibits high ad-sorption for cesium, i.e., K_d is as highas 60 000 mL/g in neutral solution. The crystal structure of Na_4Ti_4Si_3O_(10) was characterized byX-ray difiraction (XRD), scanning electronic microscope (SEM), transmission electron microscope(TEM), Raman spectrum, differential thermal and thermogravimetric analysis (DTA/TGA), inductivelycoupled plasma (ICP), and X fluorescence analysis. The compound is tetragonal, P4_2, a=b = 0.781 10nm, c = 1.196 45 nm, alpha =beta = gamma = 90 deg, Z = 4, and R^a = 0.041; Na_4Ti_4Si_3O_(10) has athree dimensional framework consisting of Ti-O octahedral clusters and Si-O tetrahedra. The resultsshow that Na_4Ti_4Si_3O_(10) has good chemical stability, thermal stability, and high cesium ionexchange capacity in the whole pH range.
文摘There are numerous impurities in wet-process phosphoric acid,among which manganese is one of detrimental metallic impurities,and it causes striking negative effects on the industrial phosphoric acid production and downstream commodity.This article investigated the adsorption behavior of manganese from phosphoric acid employing Sinco-430 cationic ion-exchange resin.Resorting FT-IR and XPS characterizations,the adsorption mechanism was proved to be that manganese was combined with sulfonic acid group.Several crucial parameters such as temperature,phosphoric acid content and resin dose were studied to optimize adsorption efficiency.Through optimization,removal percentage and sorption capacity of manganese reached 53.12 wt%,28.34 mg·g^-1,respectively.Pseudo-2nd-order kinetic model simulated kinetics data best and the activation energy was evaluated as 6.34 kJ·mol^-1 for the sorption reaction of manganese.In addition,the global adsorption rate was first controlled by film diffusion process and second determined by pore diffusion process.It was found that the resin could adsorb up to 50.24 mg·g^-1 for manganese.Equilibrium studies showed that Toth adsorption isotherm model fitted best,followed by Temkin and Langmuir adsorption isotherm models.Thermodynamic analysis showed that manganese adsorption was an endothermic process with enhanced randomness and spontaneity.
基金supported by the National Natural Science Foundation of China(51672312,21571192,21373275)the Science and Technology Program of Wuhan(2016010101010018,2015070504020220)+1 种基金the Key Project in the National Science&Technology Pillar Program during the Twelfth Five-Year Plan Period(2015BAB01B01)the Natural Science Foundation of South-Central University for Nationalities(XTZ15016,CZP17062)~~
文摘As a two dimensional(2D)visible‐light‐responsive semiconductor photocatalyst,the photoreactivity of Bi2WO6 is not high enough for practical application owing to its limited response to visible light and rapid recombination of photogenerated electron‐hole pairs.In this paper,2D core‐shell structured Bi2WO6@Bi2S3 nanoplates were prepared by calcination of a mixture of Bi2WO6(1.3 g)and a certain amount of Na2S·9H2O(0–3.0 g)at 350°C for 2 h.The reactivity of the resulting photocatalyst materials was evaluated by photocatalytic degradation of Brilliant Red X‐3B(X3B),an anionic dye,under visible light irradiation(?>420 nm).As the amount of Na2S·9H2O was increased from 0 to 1.5 g,the degradation rate constant of X3B sharply increased from 0.40×10?3 to 6.6×10?3 min?1.The enhanced photocatalytic activity of Bi2WO6@Bi2S3 was attributed to the photosensitization of Bi2S3,which greatly extended the light‐responsive range from the visible to the NIR,and the formation of a heterojunction,which retarded the recombination rate of photogenerated electron‐hole pairs.However,further increases in the amount of Na2S·9H2O(from 1.5 to 3.0 g)resulted in a decrease of the photocatalytic activity of the Bi2WO6@Bi2S3 nanoplates owing to the formation of a photo‐inactive NaBiS2 layer covering the Bi2WO6 surface.
基金Supported by the National Basic Research Program of China (2007CB714300)
文摘The esterification reactions of lactic acid with isobutanol and n-butanol have been studied in the presence of acid ion-exchange resin Weblyst D009. The influences of catalyst loading, stirrer speed, catalyst particle size, initial reactant molar ratio and temperature on the reaction rate have been examined. Experimental kinetic data were correlated by using the pseudo-homogeneous, Langnluir-Hinshelwood and Eley-Rideal models. Nonideality of the liquid phase was taken into account by using activities instead of molar fractions. The activity coefficients were calculated according to the group contribution method UNIFAC. Provided that the nonideality of the liquid is taken into account, the esterification kinetics of lactic acid with isobutanol and n-butanol catalyzed by the acid ion-exchange resin can be described using all threemodels with reasonable errors.