BACKGROUND Spinal meningiomas(SMs)are common benign tumors that are typically treated with surgical resection.The choice of surgical approach may vary depending on the location of dural attachment of the SM,with a pos...BACKGROUND Spinal meningiomas(SMs)are common benign tumors that are typically treated with surgical resection.The choice of surgical approach may vary depending on the location of dural attachment of the SM,with a posterior approach being the traditional preference.However,there is limited research available on the impact of dural attachment location on outcomes following posterior approach for SM resection.The average age of the included 34 patients’(10 males and 24 females)age was 62.09 years.Mean follow-up duration was 22.65 months.The location of SM was the thoracic spine in 32 cases,with only 2 in the cervical spine.On average,intraoperative blood loss was 520.59 mL,and operating time was 176.76 minutes.Thirty three cases had successful outcomes while only 1 experienced an unexpe-cted outcome.The tumor recurrence rate was 2.9%.After surgery,there were 3 cases of cerebral spinal fluid leakage,1 case of pneumonia,and 1 case of urinary tract infection.Dural attachments were predominantly found dorsal or dorso-lateral(13 cases),followed by ventral or ventrolateral(14 cases),and lateral(7 cases).The outcomes among these subgroups were similar.CONCLUSION The posterior approach for SM resection is safe and effective,yielding comparable surgical and neurological outcomes regardless of the dural attachment location.展开更多
This article explores the intricate relationship between attachment styles formed during early childhood and the subsequent responses to traumatic events, particularly the death of a parent. Drawing on the theoretical...This article explores the intricate relationship between attachment styles formed during early childhood and the subsequent responses to traumatic events, particularly the death of a parent. Drawing on the theoretical framework of attachment theory and incorporating contemporary research, the paper discusses how parental interactions shape the neural circuitry of infants and children, influencing their ability to form secure or insecure attachments. These attachment styles, in turn, play a critical role in determining the child’s coping mechanisms when faced with trauma. This paper focuses on trying to understand how attachment theory is connected to the reaction to trauma with a highlight on the four major styles of attachments which are secure, anxious, avoidant, and disorganized to mention but a few, and how they influence stress and adversity in children. Attachment theory holds that human beings’ ability to form affectional bonds in infancy determines their patterns of relatedness across the life cycle. The type of attachment that is secure usually supports healthy adaptation and good coping mechanisms regardless of the trauma in the childhood of the child. While secure attachment mostly facilitates favorable trauma-related outcomes, anxious or avoidant attachment can exacerbate or alter the responses. The caregiving system that is avoidant attachment has implications of autonomous self-functioning which has features of suppression of the emotional response and poor search for emotional support during stress. From the principles of developmental psychology and trauma theory, the paper also focuses on the major significance of the child’s early caregivers’ interactions that define the resilience and vulnerability factor. This knowledge is therefore critical in designing specific interventions based on the improvement of coping behaviors and emotional regulatory systems of children who have been exposed to trauma. Finally, we have the synthesis of new knowledge about the role of secure attachment relationships as its fundamental element in shaping adaptive traumatization and psychological development. The article also delves into the physiological processes involved in emotional regulation and the role of cortisol in disrupting attachment. Finally, the implications of these findings for therapeutic interventions and the challenges of addressing prolonged grief and traumatic responses in clinical settings are considered.展开更多
In recent years,traditional villages have emerged as popular tourist destinations due to their distinctive resource value.Typically situated in remote and less developed areas,traditional villages boast primitive natu...In recent years,traditional villages have emerged as popular tourist destinations due to their distinctive resource value.Typically situated in remote and less developed areas,traditional villages boast primitive natural surroundings and rich historical and cultural heritage.These characteristics offer urban dwellers a temporary escape from the complexities of modern life,allowing them to experience physical and mental rejuvenation,mental relaxation,and overall happiness during their visit.By conducting a review of the existing literature concerning tourists’happiness in traditional villages,this study establishes a framework to understand tourists’happiness in traditional village tourism.Using the Qiangang ancient village in Conghua District,Guangzhou as a case study,the research examines the current state of rural characteristics,the establishment of cultural brands,and the promotion of the active utilization of ancient villages within the context of integrating culture,sports,tourism,and agriculture.Based on this analysis,the author proposes strategies to enhance tourists’happiness,including the preservation and development of rural characteristics,the promotion and preservation of local cultural attributes,and the collaborative advancement of culture,sports,tourism,and agriculture to engage key stakeholders actively.展开更多
In order to theoretically study the growth morphology of dihydroxylammonium 5,5’-bistetrazole-1,1’-dio late(TKX-50)crystal in different solvent systems,crystal–solvent models were established,and then molecular dyn...In order to theoretically study the growth morphology of dihydroxylammonium 5,5’-bistetrazole-1,1’-dio late(TKX-50)crystal in different solvent systems,crystal–solvent models were established,and then molecular dynamics(MD)methods were adopted as a means to simulate particle motion.Modified attachment energy(MAE)model was employed to calculate the growth morphology of TKX-50.The simulation results demonstrate that COMPASS force field and RESP charge are suitable for molecular dynamics simulation of TKX-50.The morphologically dominant growth surfaces of TKX-50 in vacuum are(020),(011),(11–1),(100)and(120),respectively.In water(H_(2)O)and N,N-dimethylformamide(DMF)solvents,the(11–1)face is the largest in the habit face,the growth rate of(020)face becomes faster.With the increase of temperature,the aspect ratios of TKX-50 crystal in DMF solvent increase,and the areas of the(120)faces decrease.In ethylene glycol/H_(2)O mixed solvent system with volume ratio of 1/1,aspect ratio of TKX-50 is relatively small.In formic acid/H_(2)O mixed solvents with different volume ratios(1/4,1/3,1/2,1/1 and 2/1),aspect ratio of TKX-50 is relatively small when volume ratio is 1/2.展开更多
Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^...Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^(+)/K^(+)-ATPase participates in Ca^(2+)-signaling transduction and neurotransmitter release by coordinating the ion concentration gradient across the cell membrane.Na^(+)/K^(+)-ATPase works synergistically with multiple ion channels in the cell membrane to form a dynamic network of ion homeostatic regulation and affects cellular communication by regulating chemical signals and the ion balance among different types of cells.Therefo re,it is not surprising that Na^(+)/K^(+)-ATPase dysfunction has emerged as a risk factor for a variety of neurological diseases.However,published studies have so far only elucidated the important roles of Na^(+)/K^(+)-ATPase dysfunction in disease development,and we are lacking detailed mechanisms to clarify how Na^(+)/K^(+)-ATPase affects cell function.Our recent studies revealed that membrane loss of Na^(+)/K^(+)-ATPase is a key mechanism in many neurological disorders,particularly stroke and Parkinson's disease.Stabilization of plasma membrane Na^(+)/K^(+)-ATPase with an antibody is a novel strategy to treat these diseases.For this reason,Na^(+)/K^(+)-ATPase acts not only as a simple ion pump but also as a sensor/regulator or cytoprotective protein,participating in signal transduction such as neuronal autophagy and apoptosis,and glial cell migration.Thus,the present review attempts to summarize the novel biological functions of Na^(+)/K^(+)-ATPase and Na^(+)/K^(+)-ATPase-related pathogenesis.The potential for novel strategies to treat Na^(+)/K^(+)-ATPase-related brain diseases will also be discussed.展开更多
Achieving a highly robust zinc(Zn)metal anode is extremely important for improving the performance of aqueous Zn-ion batteries(AZIBs)for advancing“carbon neutrality”society,which is hampered by the uncontrollable gr...Achieving a highly robust zinc(Zn)metal anode is extremely important for improving the performance of aqueous Zn-ion batteries(AZIBs)for advancing“carbon neutrality”society,which is hampered by the uncontrollable growth of Zn dendrite and severe side reactions including hydrogen evolution reaction,corrosion,and passivation,etc.Herein,an interlayer containing fluorinated zincophilic covalent organic framework with sulfonic acid groups(COF-S-F)is developed on Zn metal(Zn@COF-S-F)as the artificial solid electrolyte interface(SEI).Sulfonic acid group(-SO_(3)H)in COF-S-F can effectively ameliorate the desolvation process of hydrated Zn ions,and the three-dimensional channel with fluoride group(-F)can provide interconnected channels for the favorable transport of Zn ions with ion-confinement effects,endowing Zn@COF-S-F with dendrite-free morphology and suppressed side reactions.Consequently,Zn@COF-S-F symmetric cell can stably cycle for 1,000 h with low average hysteresis voltage(50.5 m V)at the current density of 1.5 m A cm^(-2).Zn@COF-S-F|Mn O_(2)cell delivers the discharge specific capacity of 206.8 m Ah g^(-1)at the current density of 1.2 A g^(-1)after 800 cycles with high-capacity retention(87.9%).Enlightening,building artificial SEI on metallic Zn surface with targeted design has been proved as the effective strategy to foster the practical application of high-performance AZIBs.展开更多
Nanofluidic channels inspired by electric eels open a new era of efficient harvesting of clean blue osmotic energy from salinity gradients.Limited by less charge and weak ion selectivity of the raw material itself,ene...Nanofluidic channels inspired by electric eels open a new era of efficient harvesting of clean blue osmotic energy from salinity gradients.Limited by less charge and weak ion selectivity of the raw material itself,energy conversion through nanofluidic channels is still facing considerable challenges.Here,a facile and efficient strategy to enhance osmotic energy harvesting based on drastically increasing surface charge density of MXenes subnanochannels via oxygen plasma is proposed.This plasma could break Ti–C bonds in the MXenes subnanochannels and effectively facilitate the formation of more Ti–O,C═O,O–OH,and rutile with a stronger negative charge and work function,which leads the surface potential of MXenes membrane to increase from 205 to 430 mV.This significant rise of surface charge endows the MXenes membrane with high cation selectivity,which could make the output power density of the MXenes membrane increase by 248.2%,reaching a high value of 5.92Wm^(−2) in the artificial sea‐river water system.Furthermore,with the assistance of low‐quality heat at 50℃,the osmotic power is enhanced to an ultrahigh value of 9.68Wm^(−2),which outperforms those of the state‐of‐the‐art two‐dimensional(2D)nanochannel membranes.This exciting breakthrough demonstrates the enormous potential of the facile plasma‐treated 2D membranes for osmotic energy harvesting.展开更多
Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during t...Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during the electrochemical reaction causes its electrochemical cycling stability to be undesirable.In this work,heterointerface engineering-induced oxygen defects are introduced into heterostructure MnO_(2)(δa-MnO_(2))by in situ electrochemical activation to inhibit manganese dissolution for aqueous zinc ion batteries.Meanwhile,the heterointerface between the disordered amorphous and the crystalline MnO_(2)ofδa-MnO_(2)is decisive for the formation of oxygen defects.And the experimental results indicate that the manganese dissolution ofδa-MnO_(2)is considerably inhibited during the charge/discharge cycle.Theoretical analysis indicates that the oxygen defect regulates the electronic and band structure and the Mn-O bonding state of the electrode material,thereby promoting electron transport kinetics as well as inhibiting Mn dissolution.Consequently,the capacity ofδa-MnO_(2)does not degrade after 100 cycles at a current density of 0.5 Ag^(-1)and also 91%capacity retention after 500cycles at 1 Ag^(-1).This study provides a promising insight into the development of high-performance manganese-based cathode materials through a facile and low-cost strategy.展开更多
Silicon(Si)is a promising anode material for lithium‐ion batteries(LIBs)owing to its tremendously high theoretical storage capacity(4200 mAh g−1),which has the potential to elevate the energy of LIBs.However,Si anode...Silicon(Si)is a promising anode material for lithium‐ion batteries(LIBs)owing to its tremendously high theoretical storage capacity(4200 mAh g−1),which has the potential to elevate the energy of LIBs.However,Si anodes exhibit severe volume change during lithiation/delithiation processes,resulting in anode pulverization and delamination with detrimental growth of solid electrolyte interface layers.As a result,the cycling stability of Si anodes is insufficient for commercialization in LIBs.Polymeric binders can play critical roles in Si anodes by affecting their cycling stability,although they occupy a small portion of the electrodes.This review introduces crucial factors influencing polymeric binders'properties and the electrochemical performance of Si anodes.In particular,we emphasize the structure–property relationships of binders in the context of molecular design strategy,functional groups,types of interactions,and functionalities of binders.Furthermore,binders with additional functionalities,such as electrical conductivity and self‐healability,are extensively discussed,with an emphasis on the binder design principle.展开更多
With the increasing demand for scalable and cost-effective electrochemical energy storage,aqueous zinc ion batteries(AZIBs)have a broad application prospect as an inexpensive,efficient,and naturally secure energy stor...With the increasing demand for scalable and cost-effective electrochemical energy storage,aqueous zinc ion batteries(AZIBs)have a broad application prospect as an inexpensive,efficient,and naturally secure energy storage device.However,the limitations suffered by AZIBs,including volume expansion and active materials dissolution of the cathode,electrochemical corrosion,irreversible side reactions,zinc dendrites of the anode,have seriously decelerated the civilianization process of AZIBs.Currently,polymers have tremendous superiority for application in AZIBs attributed to their exceptional chemical stability,tunable structure,high energy density and outstanding mechanical properties.Considering the expanding applications of AZIBs and the superiority of polymers,this comprehensive paper meticulously reviews the benefits of utilizing polymeric applied to cathodes and anodes,respectively.To begin with,with adjustable structure as an entry point,the correlation between polymer structure and the function of energy storage as well as optimization is deeply investigated in respect to the mechanism.Then,depending on the diversity of properties and structures,the development of polymers in AZIBs is summarized,including conductive polymers,redox polymers as well as carbon composite polymers for cathode and polyvinylidene fluoride-,carbonyl-,amino-,nitrile-based polymers for anode,and a comprehensive evaluation of the shortcomings of these strategies is provided.Finally,an outlook highlights some of the challenges posed by the application of polymers and offers insights into the potential future direction of polymers in AZIBs.It is designed to provide a thorough reference for researchers and developers working on polymer for AZIBs.展开更多
Hydrogel electrolytes hold great potential in flexible zinc ion supercapacitors(ZICs)due to their high conductivity,good safety,and flexibility.However,freezing of electrolytes at low temperature(subzero)leads to dras...Hydrogel electrolytes hold great potential in flexible zinc ion supercapacitors(ZICs)due to their high conductivity,good safety,and flexibility.However,freezing of electrolytes at low temperature(subzero)leads to drastic reduction in ionic conductivity and mechanical properties that deteriorates the performance of flexible ZICs.Besides,the mechanical fracture during arbitrary deformations significantly prunes out the lifespan of the flexible device.Herein,a Zn^(2+)and Li^(+)co-doped,polypyrrole-dopamine decorated Sb_(2)S_(3)incorporated,and polyvinyl alcohol/poly(N-(2-hydroxyethyl)acrylamide)double-network hydrogel electrolyte is constructed with favorable mechanical reliability,anti-freezing,and self-healing ability.In addition,it delivers ultra-high ionic conductivity of 8.6 and 3.7 S m^(-1)at 20 and−30°C,respectively,and displays excellent mechanical properties to withstand tensile stress of 1.85 MPa with tensile elongation of 760%,together with fracture energy of 5.14 MJ m^(-3).Notably,the fractured hydrogel electrolyte can recover itself after only 90 s of infrared illumination,while regaining 83%of its tensile strain and almost 100%of its ionic conductivity during−30–60°C.Moreover,ZICs coupled with this hydrogel electrolyte not only show a wide voltage window(up to 2 V),but also provide high energy density of 230 Wh kg^(-1)at power density of 500 W kg^(-1)with a capacity retention of 86.7%after 20,000 cycles under 20°C.Furthermore,the ZICs are able to retain excellent capacity even under various mechanical deformation at−30°C.This contribution will open up new insights into design of advanced wearable flexible electronics with environmental adaptability and long-life span.展开更多
The implementation of China’s three-child fertility policy has led to a notable increase in multiple-child families.Notably,firstborn children experience a significant transition from being an only child to a non-only ...The implementation of China’s three-child fertility policy has led to a notable increase in multiple-child families.Notably,firstborn children experience a significant transition from being an only child to a non-only child.This transition is associated with problematic behaviors,affecting their social adjustment,sibling relationships,and family harmony.Although several studies have examined the relationship between parent-child attachment and problem behaviors exhibited byfirstborn children during family transitions,thefindings have been inconsistent.Hence,a meta-analytic study was undertaken to elucidate the inconsistencies in this relationship and explore the moderating factors that may contribute to these discrepancies.Using a systematic literature retrieval and screening method,12 effect sizes were derived from the 10 eligible articles,encompassing a sample size of 5319.The meta-analysis demonstrated a low negative association between parent-child secure attachment and problem behaviors exhibited byfirstborn children during family transitions.Furthermore,the present study investigates potential moderator factors,such as children’s age and geographic region,to gain a more nuanced understanding of the relationship.Consequently,the establishment of parent-child attachment relationships has the potential to mitigate problem behaviors observed infirst-born children during family transitions.The implications of thesefindings indicate that parents can nurture secure attachment bonds with their children by demonstrating sensitive responsiveness,employing positive parenting practices,and fostering emotional availability.These efforts contribute to the cultivation of secure internal working models and positive behavioral manifestations withinfirst-born children,which in turn affect their relationships with siblings.展开更多
In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterpart...In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.展开更多
The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries.Nevertheless,the broad application prospect is obstructed by ...The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries.Nevertheless,the broad application prospect is obstructed by the sluggish Na^(+)kinetics and the phase transitions upon cycling.Herein,we establish the thermodynamically stable phase diagram of various Mn-based oxide composites precisely controlled by sodium content tailoring strategy coupling with co-doping and solid-state reaction.The chemical environment of the P2/P'3 and P2/P3 biphasic composites indicate that the charge compensation mechanism stems from the cooperative contribution of anions and cations.Benefiting from the no phase transition to scavenge the structure strain,P2/P'3 electrode can deliver long cycling stability(capacity retention of 73.8%after 1000 cycles at 10 C)and outstanding rate properties(the discharge capacity of 84.08 mA h g^(-1)at 20 C)than P2/P3 electrode.Furthermore,the DFT calculation demonstrates that the introducing novel P'3 phase can significantly regulate the Na^(+)reaction dynamics and modify the local electron configuration of Mn.The effective phase engineering can provide a reference for designing other high-performance electrode materials for Na-ion batteries.展开更多
With the rapid development of portable electronics and electric road vehicles,high-energy-density batteries have been becoming front-burner issues.Traditionally,homogeneous electrolyte cannot simultaneously meet diame...With the rapid development of portable electronics and electric road vehicles,high-energy-density batteries have been becoming front-burner issues.Traditionally,homogeneous electrolyte cannot simultaneously meet diametrically opposed demands of high-potential cathode and low-potential anode,which are essential for high-voltage batteries.Meanwhile,homogeneous electrolyte is difficult to achieve bi-or multi-functions to meet different requirements of electrodes.In comparison,the asymmetric electrolyte with bi-or multi-layer disparate components can satisfy distinct requirements by playing different roles of each electrolyte layer and meanwhile compensates weakness of individual electrolyte.Consequently,the asymmetric electrolyte can not only suppress by-product sedimentation and continuous electrolyte decomposition at the anode while preserving active substances at the cathode for high-voltage batteries with long cyclic lifespan.In this review,we comprehensively divide asymmetric electrolytes into three categories:decoupled liquid-state electrolytes,bi-phase solid/liquid electrolytes and decoupled asymmetric solid-state electrolytes.The design principles,reaction mechanism and mutual compatibility are also studied,respectively.Finally,we provide a comprehensive vision for the simplification of structure to reduce costs and increase device energy density,and the optimization of solvation structure at anolyte/catholyte interface to realize fast ion transport kinetics.展开更多
Planar Na ion micro-supercapacitors(NIMSCs) that offer both high energy density and power density are deemed to a promising class of miniaturized power sources for wearable and portable microelectron-ics. Nevertheless...Planar Na ion micro-supercapacitors(NIMSCs) that offer both high energy density and power density are deemed to a promising class of miniaturized power sources for wearable and portable microelectron-ics. Nevertheless, the development of NIMSCs are hugely impeded by the low capacity and sluggish Na ion kinetics in the negative electrode.Herein, we demonstrate a novel carbon-coated Nb_(2)O_5 microflower with a hierarchical structure composed of vertically intercrossed and porous nanosheets, boosting Na ion storage performance. The unique structural merits, including uniform carbon coating, ultrathin nanosheets and abun-dant pores, endow the Nb_(2)O_5 microflower with highly reversible Na ion storage capacity of 245 mAh g^(-1) at 0.25 C and excellent rate capability.Benefiting from high capacity and fast charging of Nb_(2)O_5 microflower, the planar NIMSCs consisted of Nb_(2)O_5 negative electrode and activated car-bon positive electrode deliver high areal energy density of 60.7 μWh cm^(-2),considerable voltage window of 3.5 V and extraordinary cyclability. Therefore, this work exploits a structural design strategy towards electrode materials for application in NIMSCs, holding great promise for flexible microelectronics.展开更多
Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonethel...Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonetheless,the intricate energy storage mechanisms in aqueous electrolytes place stringent require-ments on the host materials.Prussian blue analogs(PBAs),with their open three-dimensional framework and facile synthesis,stand out as leading candidates for aqueous energy storage.However,PBAs possess a swift capacity fade and limited cycle longevity,for their structural integrity is compromised by the pronounced dis-solution of transition metal(TM)ions in the aqueous milieu.This manuscript provides an exhaustive review of the recent advancements concerning PBAs in ASIBs and APIBs.The dissolution mechanisms of TM ions in PBAs,informed by their structural attributes and redox processes,are thoroughly examined.Moreover,this study delves into innovative design tactics to alleviate the dissolution issue of TM ions.In conclusion,the paper consolidates various strategies for suppressing the dissolution of TM ions in PBAs and posits avenues for prospective exploration of high-safety aqueous sodium-/potassium-ion batteries.展开更多
On the basis of combing the relevant theories of place attachment, the planning framework of upgrading and reconstruction of old parks based on place attachment was put forward. Taking Nanchang Bayi Park as an example...On the basis of combing the relevant theories of place attachment, the planning framework of upgrading and reconstruction of old parks based on place attachment was put forward. Taking Nanchang Bayi Park as an example, the methods and key points of landscape improvement and transformation of old urban parks based on place attachment were explained to provide new ways and references for the renewal of old urban parks.展开更多
Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and p...Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C.展开更多
Josephson junction plays a key role not only in studying the basic physics of unconventional iron-based superconductors but also in realizing practical application of thin-film based devices,therefore the preparation ...Josephson junction plays a key role not only in studying the basic physics of unconventional iron-based superconductors but also in realizing practical application of thin-film based devices,therefore the preparation of high-quality iron pnictide Josephson junctions is of great importance.In this work,we have successfully fabricated Josephson junctions from Co-doped BaFe_(2)As_(2)thin films using a direct junction fabrication technique which utilizes high energy focused helium ion beam(FHIB).The electrical transport properties were investigated for junctions fabricated with various He^(+)irradiation doses.The junctions show sharp superconducting transition around 24 K with a narrow transition width of 2.5 K,and a dose correlated foot-structure resistance which corresponds to the effective tuning of junction properties by He^(+)irradiation.Significant J_c suppression by more than two orders of magnitude can be achieved by increasing the He^(+)irradiation dose,which is advantageous for the realization of low noise ion pnictide thin film devices.Clear Shapiro steps are observed under 10 GHz microwave irradiation.The above results demonstrate the successful fabrication of high quality and controllable Co-doped BaFe_(2)As_(2)Josephson junction with high reproducibility using the FHIB technique,laying the foundation for future investigating the mechanism of iron-based superconductors,and also the further implementation in various superconducting electronic devices.展开更多
文摘BACKGROUND Spinal meningiomas(SMs)are common benign tumors that are typically treated with surgical resection.The choice of surgical approach may vary depending on the location of dural attachment of the SM,with a posterior approach being the traditional preference.However,there is limited research available on the impact of dural attachment location on outcomes following posterior approach for SM resection.The average age of the included 34 patients’(10 males and 24 females)age was 62.09 years.Mean follow-up duration was 22.65 months.The location of SM was the thoracic spine in 32 cases,with only 2 in the cervical spine.On average,intraoperative blood loss was 520.59 mL,and operating time was 176.76 minutes.Thirty three cases had successful outcomes while only 1 experienced an unexpe-cted outcome.The tumor recurrence rate was 2.9%.After surgery,there were 3 cases of cerebral spinal fluid leakage,1 case of pneumonia,and 1 case of urinary tract infection.Dural attachments were predominantly found dorsal or dorso-lateral(13 cases),followed by ventral or ventrolateral(14 cases),and lateral(7 cases).The outcomes among these subgroups were similar.CONCLUSION The posterior approach for SM resection is safe and effective,yielding comparable surgical and neurological outcomes regardless of the dural attachment location.
文摘This article explores the intricate relationship between attachment styles formed during early childhood and the subsequent responses to traumatic events, particularly the death of a parent. Drawing on the theoretical framework of attachment theory and incorporating contemporary research, the paper discusses how parental interactions shape the neural circuitry of infants and children, influencing their ability to form secure or insecure attachments. These attachment styles, in turn, play a critical role in determining the child’s coping mechanisms when faced with trauma. This paper focuses on trying to understand how attachment theory is connected to the reaction to trauma with a highlight on the four major styles of attachments which are secure, anxious, avoidant, and disorganized to mention but a few, and how they influence stress and adversity in children. Attachment theory holds that human beings’ ability to form affectional bonds in infancy determines their patterns of relatedness across the life cycle. The type of attachment that is secure usually supports healthy adaptation and good coping mechanisms regardless of the trauma in the childhood of the child. While secure attachment mostly facilitates favorable trauma-related outcomes, anxious or avoidant attachment can exacerbate or alter the responses. The caregiving system that is avoidant attachment has implications of autonomous self-functioning which has features of suppression of the emotional response and poor search for emotional support during stress. From the principles of developmental psychology and trauma theory, the paper also focuses on the major significance of the child’s early caregivers’ interactions that define the resilience and vulnerability factor. This knowledge is therefore critical in designing specific interventions based on the improvement of coping behaviors and emotional regulatory systems of children who have been exposed to trauma. Finally, we have the synthesis of new knowledge about the role of secure attachment relationships as its fundamental element in shaping adaptive traumatization and psychological development. The article also delves into the physiological processes involved in emotional regulation and the role of cortisol in disrupting attachment. Finally, the implications of these findings for therapeutic interventions and the challenges of addressing prolonged grief and traumatic responses in clinical settings are considered.
基金the 14th Five Year Plan Project for the Development of Philosophy and Social Sciences of Guangzhou(2023GZGJ83)Guangdong Ploytechnic of Industry and Commerce Project(2023-SKJ-20).
文摘In recent years,traditional villages have emerged as popular tourist destinations due to their distinctive resource value.Typically situated in remote and less developed areas,traditional villages boast primitive natural surroundings and rich historical and cultural heritage.These characteristics offer urban dwellers a temporary escape from the complexities of modern life,allowing them to experience physical and mental rejuvenation,mental relaxation,and overall happiness during their visit.By conducting a review of the existing literature concerning tourists’happiness in traditional villages,this study establishes a framework to understand tourists’happiness in traditional village tourism.Using the Qiangang ancient village in Conghua District,Guangzhou as a case study,the research examines the current state of rural characteristics,the establishment of cultural brands,and the promotion of the active utilization of ancient villages within the context of integrating culture,sports,tourism,and agriculture.Based on this analysis,the author proposes strategies to enhance tourists’happiness,including the preservation and development of rural characteristics,the promotion and preservation of local cultural attributes,and the collaborative advancement of culture,sports,tourism,and agriculture to engage key stakeholders actively.
基金supported by Fundamental Research Program of Shanxi Province(20210302123055)and(201801D221035).
文摘In order to theoretically study the growth morphology of dihydroxylammonium 5,5’-bistetrazole-1,1’-dio late(TKX-50)crystal in different solvent systems,crystal–solvent models were established,and then molecular dynamics(MD)methods were adopted as a means to simulate particle motion.Modified attachment energy(MAE)model was employed to calculate the growth morphology of TKX-50.The simulation results demonstrate that COMPASS force field and RESP charge are suitable for molecular dynamics simulation of TKX-50.The morphologically dominant growth surfaces of TKX-50 in vacuum are(020),(011),(11–1),(100)and(120),respectively.In water(H_(2)O)and N,N-dimethylformamide(DMF)solvents,the(11–1)face is the largest in the habit face,the growth rate of(020)face becomes faster.With the increase of temperature,the aspect ratios of TKX-50 crystal in DMF solvent increase,and the areas of the(120)faces decrease.In ethylene glycol/H_(2)O mixed solvent system with volume ratio of 1/1,aspect ratio of TKX-50 is relatively small.In formic acid/H_(2)O mixed solvents with different volume ratios(1/4,1/3,1/2,1/1 and 2/1),aspect ratio of TKX-50 is relatively small when volume ratio is 1/2.
基金supported by the National Natural Science Foundation of China,No.82173800 (to JB)Shenzhen Science and Technology Program,No.KQTD20200820113040070 (to JB)。
文摘Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^(+)/K^(+)-ATPase participates in Ca^(2+)-signaling transduction and neurotransmitter release by coordinating the ion concentration gradient across the cell membrane.Na^(+)/K^(+)-ATPase works synergistically with multiple ion channels in the cell membrane to form a dynamic network of ion homeostatic regulation and affects cellular communication by regulating chemical signals and the ion balance among different types of cells.Therefo re,it is not surprising that Na^(+)/K^(+)-ATPase dysfunction has emerged as a risk factor for a variety of neurological diseases.However,published studies have so far only elucidated the important roles of Na^(+)/K^(+)-ATPase dysfunction in disease development,and we are lacking detailed mechanisms to clarify how Na^(+)/K^(+)-ATPase affects cell function.Our recent studies revealed that membrane loss of Na^(+)/K^(+)-ATPase is a key mechanism in many neurological disorders,particularly stroke and Parkinson's disease.Stabilization of plasma membrane Na^(+)/K^(+)-ATPase with an antibody is a novel strategy to treat these diseases.For this reason,Na^(+)/K^(+)-ATPase acts not only as a simple ion pump but also as a sensor/regulator or cytoprotective protein,participating in signal transduction such as neuronal autophagy and apoptosis,and glial cell migration.Thus,the present review attempts to summarize the novel biological functions of Na^(+)/K^(+)-ATPase and Na^(+)/K^(+)-ATPase-related pathogenesis.The potential for novel strategies to treat Na^(+)/K^(+)-ATPase-related brain diseases will also be discussed.
基金financially supported by National Natural Science Foundation of China(Nos.51872090,51772097,52372252)Hebei Natural Science Fund for Distinguished Young Scholar(No.E2019209433)+1 种基金Youth Talent Program of Hebei Provincial Education Department(No.BJ2018020)Natural Science Foundation of Hebei Province(No.E2020209151)。
文摘Achieving a highly robust zinc(Zn)metal anode is extremely important for improving the performance of aqueous Zn-ion batteries(AZIBs)for advancing“carbon neutrality”society,which is hampered by the uncontrollable growth of Zn dendrite and severe side reactions including hydrogen evolution reaction,corrosion,and passivation,etc.Herein,an interlayer containing fluorinated zincophilic covalent organic framework with sulfonic acid groups(COF-S-F)is developed on Zn metal(Zn@COF-S-F)as the artificial solid electrolyte interface(SEI).Sulfonic acid group(-SO_(3)H)in COF-S-F can effectively ameliorate the desolvation process of hydrated Zn ions,and the three-dimensional channel with fluoride group(-F)can provide interconnected channels for the favorable transport of Zn ions with ion-confinement effects,endowing Zn@COF-S-F with dendrite-free morphology and suppressed side reactions.Consequently,Zn@COF-S-F symmetric cell can stably cycle for 1,000 h with low average hysteresis voltage(50.5 m V)at the current density of 1.5 m A cm^(-2).Zn@COF-S-F|Mn O_(2)cell delivers the discharge specific capacity of 206.8 m Ah g^(-1)at the current density of 1.2 A g^(-1)after 800 cycles with high-capacity retention(87.9%).Enlightening,building artificial SEI on metallic Zn surface with targeted design has been proved as the effective strategy to foster the practical application of high-performance AZIBs.
基金National Natural Science Foundation of China,Grant/Award Number:52175174China Postdoctoral Science Foundation,Grant/Award Number:2022M721791National Key Research and Development Program of China,Grant/Award Number:2020YFA0711003。
文摘Nanofluidic channels inspired by electric eels open a new era of efficient harvesting of clean blue osmotic energy from salinity gradients.Limited by less charge and weak ion selectivity of the raw material itself,energy conversion through nanofluidic channels is still facing considerable challenges.Here,a facile and efficient strategy to enhance osmotic energy harvesting based on drastically increasing surface charge density of MXenes subnanochannels via oxygen plasma is proposed.This plasma could break Ti–C bonds in the MXenes subnanochannels and effectively facilitate the formation of more Ti–O,C═O,O–OH,and rutile with a stronger negative charge and work function,which leads the surface potential of MXenes membrane to increase from 205 to 430 mV.This significant rise of surface charge endows the MXenes membrane with high cation selectivity,which could make the output power density of the MXenes membrane increase by 248.2%,reaching a high value of 5.92Wm^(−2) in the artificial sea‐river water system.Furthermore,with the assistance of low‐quality heat at 50℃,the osmotic power is enhanced to an ultrahigh value of 9.68Wm^(−2),which outperforms those of the state‐of‐the‐art two‐dimensional(2D)nanochannel membranes.This exciting breakthrough demonstrates the enormous potential of the facile plasma‐treated 2D membranes for osmotic energy harvesting.
基金funds from the National Natural Science Foundation of China(51772082 and 51804106)the Natural Science Foundation of Hunan Province(2023JJ10005)
文摘Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during the electrochemical reaction causes its electrochemical cycling stability to be undesirable.In this work,heterointerface engineering-induced oxygen defects are introduced into heterostructure MnO_(2)(δa-MnO_(2))by in situ electrochemical activation to inhibit manganese dissolution for aqueous zinc ion batteries.Meanwhile,the heterointerface between the disordered amorphous and the crystalline MnO_(2)ofδa-MnO_(2)is decisive for the formation of oxygen defects.And the experimental results indicate that the manganese dissolution ofδa-MnO_(2)is considerably inhibited during the charge/discharge cycle.Theoretical analysis indicates that the oxygen defect regulates the electronic and band structure and the Mn-O bonding state of the electrode material,thereby promoting electron transport kinetics as well as inhibiting Mn dissolution.Consequently,the capacity ofδa-MnO_(2)does not degrade after 100 cycles at a current density of 0.5 Ag^(-1)and also 91%capacity retention after 500cycles at 1 Ag^(-1).This study provides a promising insight into the development of high-performance manganese-based cathode materials through a facile and low-cost strategy.
基金National Research Foundation,Grant/Award Number:2022R1A2C1092273。
文摘Silicon(Si)is a promising anode material for lithium‐ion batteries(LIBs)owing to its tremendously high theoretical storage capacity(4200 mAh g−1),which has the potential to elevate the energy of LIBs.However,Si anodes exhibit severe volume change during lithiation/delithiation processes,resulting in anode pulverization and delamination with detrimental growth of solid electrolyte interface layers.As a result,the cycling stability of Si anodes is insufficient for commercialization in LIBs.Polymeric binders can play critical roles in Si anodes by affecting their cycling stability,although they occupy a small portion of the electrodes.This review introduces crucial factors influencing polymeric binders'properties and the electrochemical performance of Si anodes.In particular,we emphasize the structure–property relationships of binders in the context of molecular design strategy,functional groups,types of interactions,and functionalities of binders.Furthermore,binders with additional functionalities,such as electrical conductivity and self‐healability,are extensively discussed,with an emphasis on the binder design principle.
基金financially supported by the National Natural Science Foundation of China(51872090,51772097,22304055)the Hebei Natural Science Fund for Distinguished Young Scholar(E2019209433)+4 种基金the Youth Talent Program of Hebei Provincial Education Department(BJ2018020)the Natural Science Foundation of Hebei Province(E2020209151,E2022209158,B2022209026,D2023209012)the Central Guiding Local Science and Technology Development Fund Project(236Z4409G)the Science and Technology Project of Hebei Education Department(SLRC2019028)the Science and Technology Planning Project of Tangshan City(22130227H)。
文摘With the increasing demand for scalable and cost-effective electrochemical energy storage,aqueous zinc ion batteries(AZIBs)have a broad application prospect as an inexpensive,efficient,and naturally secure energy storage device.However,the limitations suffered by AZIBs,including volume expansion and active materials dissolution of the cathode,electrochemical corrosion,irreversible side reactions,zinc dendrites of the anode,have seriously decelerated the civilianization process of AZIBs.Currently,polymers have tremendous superiority for application in AZIBs attributed to their exceptional chemical stability,tunable structure,high energy density and outstanding mechanical properties.Considering the expanding applications of AZIBs and the superiority of polymers,this comprehensive paper meticulously reviews the benefits of utilizing polymeric applied to cathodes and anodes,respectively.To begin with,with adjustable structure as an entry point,the correlation between polymer structure and the function of energy storage as well as optimization is deeply investigated in respect to the mechanism.Then,depending on the diversity of properties and structures,the development of polymers in AZIBs is summarized,including conductive polymers,redox polymers as well as carbon composite polymers for cathode and polyvinylidene fluoride-,carbonyl-,amino-,nitrile-based polymers for anode,and a comprehensive evaluation of the shortcomings of these strategies is provided.Finally,an outlook highlights some of the challenges posed by the application of polymers and offers insights into the potential future direction of polymers in AZIBs.It is designed to provide a thorough reference for researchers and developers working on polymer for AZIBs.
基金supported by the National Natural Science Foundation of China(52174247 and 22302066)“Hejian”Innovative Talent Project of Hunan Province(No.2022RC1088)+1 种基金the Hunan Provincial Natural Science Foundation(2023JJ40255)the Scientific Research Foundation of Hunan Provincial Education(22B0599 and 23A0442)。
文摘Hydrogel electrolytes hold great potential in flexible zinc ion supercapacitors(ZICs)due to their high conductivity,good safety,and flexibility.However,freezing of electrolytes at low temperature(subzero)leads to drastic reduction in ionic conductivity and mechanical properties that deteriorates the performance of flexible ZICs.Besides,the mechanical fracture during arbitrary deformations significantly prunes out the lifespan of the flexible device.Herein,a Zn^(2+)and Li^(+)co-doped,polypyrrole-dopamine decorated Sb_(2)S_(3)incorporated,and polyvinyl alcohol/poly(N-(2-hydroxyethyl)acrylamide)double-network hydrogel electrolyte is constructed with favorable mechanical reliability,anti-freezing,and self-healing ability.In addition,it delivers ultra-high ionic conductivity of 8.6 and 3.7 S m^(-1)at 20 and−30°C,respectively,and displays excellent mechanical properties to withstand tensile stress of 1.85 MPa with tensile elongation of 760%,together with fracture energy of 5.14 MJ m^(-3).Notably,the fractured hydrogel electrolyte can recover itself after only 90 s of infrared illumination,while regaining 83%of its tensile strain and almost 100%of its ionic conductivity during−30–60°C.Moreover,ZICs coupled with this hydrogel electrolyte not only show a wide voltage window(up to 2 V),but also provide high energy density of 230 Wh kg^(-1)at power density of 500 W kg^(-1)with a capacity retention of 86.7%after 20,000 cycles under 20°C.Furthermore,the ZICs are able to retain excellent capacity even under various mechanical deformation at−30°C.This contribution will open up new insights into design of advanced wearable flexible electronics with environmental adaptability and long-life span.
基金Funding of this research work is generously supported by the University Malaya Community Campus Grant-RUU2022-LL016Private Grant PV086-2022(University Poly-Tech MARA-UPTM),Kuala LumpurUniversitas Negeri Malang,Indonesia.
文摘The implementation of China’s three-child fertility policy has led to a notable increase in multiple-child families.Notably,firstborn children experience a significant transition from being an only child to a non-only child.This transition is associated with problematic behaviors,affecting their social adjustment,sibling relationships,and family harmony.Although several studies have examined the relationship between parent-child attachment and problem behaviors exhibited byfirstborn children during family transitions,thefindings have been inconsistent.Hence,a meta-analytic study was undertaken to elucidate the inconsistencies in this relationship and explore the moderating factors that may contribute to these discrepancies.Using a systematic literature retrieval and screening method,12 effect sizes were derived from the 10 eligible articles,encompassing a sample size of 5319.The meta-analysis demonstrated a low negative association between parent-child secure attachment and problem behaviors exhibited byfirstborn children during family transitions.Furthermore,the present study investigates potential moderator factors,such as children’s age and geographic region,to gain a more nuanced understanding of the relationship.Consequently,the establishment of parent-child attachment relationships has the potential to mitigate problem behaviors observed infirst-born children during family transitions.The implications of thesefindings indicate that parents can nurture secure attachment bonds with their children by demonstrating sensitive responsiveness,employing positive parenting practices,and fostering emotional availability.These efforts contribute to the cultivation of secure internal working models and positive behavioral manifestations withinfirst-born children,which in turn affect their relationships with siblings.
基金supported by the Teli Fellowship from Beijing Institute of Technology,the National Natural Science Foundation of China(Nos.52303366,22173109).
文摘In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.
基金supported by the National Natural Science Foundation of China (52173273)Fundamental Research Funds for the Central Universities (2022CX11013)+2 种基金Shanxi Province Science Foundation for Youths (No.202203021212391)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No.2022L253)Institute Foundation Project of China Academy of Railway Sciences Corporation Limited Metals and Chemistry Research Institute (No.2023SJ02)。
文摘The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries.Nevertheless,the broad application prospect is obstructed by the sluggish Na^(+)kinetics and the phase transitions upon cycling.Herein,we establish the thermodynamically stable phase diagram of various Mn-based oxide composites precisely controlled by sodium content tailoring strategy coupling with co-doping and solid-state reaction.The chemical environment of the P2/P'3 and P2/P3 biphasic composites indicate that the charge compensation mechanism stems from the cooperative contribution of anions and cations.Benefiting from the no phase transition to scavenge the structure strain,P2/P'3 electrode can deliver long cycling stability(capacity retention of 73.8%after 1000 cycles at 10 C)and outstanding rate properties(the discharge capacity of 84.08 mA h g^(-1)at 20 C)than P2/P3 electrode.Furthermore,the DFT calculation demonstrates that the introducing novel P'3 phase can significantly regulate the Na^(+)reaction dynamics and modify the local electron configuration of Mn.The effective phase engineering can provide a reference for designing other high-performance electrode materials for Na-ion batteries.
基金National Natural Science Foundation of China(52202299)the Analytical&Testing Center of Northwestern Polytechnical University(2022T006).
文摘With the rapid development of portable electronics and electric road vehicles,high-energy-density batteries have been becoming front-burner issues.Traditionally,homogeneous electrolyte cannot simultaneously meet diametrically opposed demands of high-potential cathode and low-potential anode,which are essential for high-voltage batteries.Meanwhile,homogeneous electrolyte is difficult to achieve bi-or multi-functions to meet different requirements of electrodes.In comparison,the asymmetric electrolyte with bi-or multi-layer disparate components can satisfy distinct requirements by playing different roles of each electrolyte layer and meanwhile compensates weakness of individual electrolyte.Consequently,the asymmetric electrolyte can not only suppress by-product sedimentation and continuous electrolyte decomposition at the anode while preserving active substances at the cathode for high-voltage batteries with long cyclic lifespan.In this review,we comprehensively divide asymmetric electrolytes into three categories:decoupled liquid-state electrolytes,bi-phase solid/liquid electrolytes and decoupled asymmetric solid-state electrolytes.The design principles,reaction mechanism and mutual compatibility are also studied,respectively.Finally,we provide a comprehensive vision for the simplification of structure to reduce costs and increase device energy density,and the optimization of solvation structure at anolyte/catholyte interface to realize fast ion transport kinetics.
基金financially supported by the National Natural Science Foundation of China (Grants. 22075279, 22279137, 22125903, 22109040)National Key R&D Program of China (Grant 2022YFA1504100)+2 种基金Dalian Innovation Support Plan for High Level Talents (2019RT09)Dalian National Labo- ratory For Clean Energy (DNL), CAS, DNL Cooperation Fund, CAS (DNL202016, DNL202019), DICP (DICP I2020032)the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (YLU-DNL Fund 2021002, YLU- DNL Fund 2021009)。
文摘Planar Na ion micro-supercapacitors(NIMSCs) that offer both high energy density and power density are deemed to a promising class of miniaturized power sources for wearable and portable microelectron-ics. Nevertheless, the development of NIMSCs are hugely impeded by the low capacity and sluggish Na ion kinetics in the negative electrode.Herein, we demonstrate a novel carbon-coated Nb_(2)O_5 microflower with a hierarchical structure composed of vertically intercrossed and porous nanosheets, boosting Na ion storage performance. The unique structural merits, including uniform carbon coating, ultrathin nanosheets and abun-dant pores, endow the Nb_(2)O_5 microflower with highly reversible Na ion storage capacity of 245 mAh g^(-1) at 0.25 C and excellent rate capability.Benefiting from high capacity and fast charging of Nb_(2)O_5 microflower, the planar NIMSCs consisted of Nb_(2)O_5 negative electrode and activated car-bon positive electrode deliver high areal energy density of 60.7 μWh cm^(-2),considerable voltage window of 3.5 V and extraordinary cyclability. Therefore, this work exploits a structural design strategy towards electrode materials for application in NIMSCs, holding great promise for flexible microelectronics.
基金This work was supported by the National Natural Science Foundation of China(52373306,52172233,and 51832004)the Natural Science Foundation of Hubei Province(2023AFA053)the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(2021CXLH0007).
文摘Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonetheless,the intricate energy storage mechanisms in aqueous electrolytes place stringent require-ments on the host materials.Prussian blue analogs(PBAs),with their open three-dimensional framework and facile synthesis,stand out as leading candidates for aqueous energy storage.However,PBAs possess a swift capacity fade and limited cycle longevity,for their structural integrity is compromised by the pronounced dis-solution of transition metal(TM)ions in the aqueous milieu.This manuscript provides an exhaustive review of the recent advancements concerning PBAs in ASIBs and APIBs.The dissolution mechanisms of TM ions in PBAs,informed by their structural attributes and redox processes,are thoroughly examined.Moreover,this study delves into innovative design tactics to alleviate the dissolution issue of TM ions.In conclusion,the paper consolidates various strategies for suppressing the dissolution of TM ions in PBAs and posits avenues for prospective exploration of high-safety aqueous sodium-/potassium-ion batteries.
基金Supported by the Social Science Foundation of Jiangxi Province (22GL10)National Natural Science Foundation of China (32001366)+1 种基金General Project of China Postdoctoral Science Foundation (2022M710403)Humanities and Social Sciences Research Project of Colleges and Universities of Jiangxi Province(JC21103)。
文摘On the basis of combing the relevant theories of place attachment, the planning framework of upgrading and reconstruction of old parks based on place attachment was put forward. Taking Nanchang Bayi Park as an example, the methods and key points of landscape improvement and transformation of old urban parks based on place attachment were explained to provide new ways and references for the renewal of old urban parks.
基金Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2020A1515110762Research Grants Council of the Hong Kong Special Administrative Region,China,Grant/Award Number:R6005‐20Shenzhen Key Laboratory of Advanced Energy Storage,Grant/Award Number:ZDSYS20220401141000001。
文摘Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C.
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2020YFF01014706 and 2017YFC0601901)the National Natural Science Foundation of China (Grant Nos.61571019 and 52177026)。
文摘Josephson junction plays a key role not only in studying the basic physics of unconventional iron-based superconductors but also in realizing practical application of thin-film based devices,therefore the preparation of high-quality iron pnictide Josephson junctions is of great importance.In this work,we have successfully fabricated Josephson junctions from Co-doped BaFe_(2)As_(2)thin films using a direct junction fabrication technique which utilizes high energy focused helium ion beam(FHIB).The electrical transport properties were investigated for junctions fabricated with various He^(+)irradiation doses.The junctions show sharp superconducting transition around 24 K with a narrow transition width of 2.5 K,and a dose correlated foot-structure resistance which corresponds to the effective tuning of junction properties by He^(+)irradiation.Significant J_c suppression by more than two orders of magnitude can be achieved by increasing the He^(+)irradiation dose,which is advantageous for the realization of low noise ion pnictide thin film devices.Clear Shapiro steps are observed under 10 GHz microwave irradiation.The above results demonstrate the successful fabrication of high quality and controllable Co-doped BaFe_(2)As_(2)Josephson junction with high reproducibility using the FHIB technique,laying the foundation for future investigating the mechanism of iron-based superconductors,and also the further implementation in various superconducting electronic devices.