Diamond-like carbon (DLC) thin film is one of the most widely used optical thin films. The fraction of chemical bondings has a great influence on the properties of the DLC film. In this work, DLC thin films are prep...Diamond-like carbon (DLC) thin film is one of the most widely used optical thin films. The fraction of chemical bondings has a great influence on the properties of the DLC film. In this work, DLC thin films are prepared by ion-beam sputtering deposition in Ar and CH4 mixtures with graphite as the target. The influences of the ion-beam voltage on the surface morphology, chemical structure, mechanical and infrared optical properties of the DLC films are investigated by atomic force microscopy (AFM), Raman spectroscopy, nanoindentation, and Fourier transform infrared (FTIR) spec- troscopy, respectively. The results show that the surface of the film is uniform and smooth. The film contains sp2 and sp3 hybridized carbon bondings. The film prepared by lower ion beam voltage has a higher sp3 bonding content. It is found that the hardness of DLC films increases with reducing ion-beam voltage, which can be attributed to an increase in the fraction of sp3 carbon bondings in the DLC film. The optical constants can be obtained by the whole infrared optical spectrum fitting with the transmittance spectrum. The refractive index increases with the decrease of the ion-beam voltage, while the extinction coefficient decreases.展开更多
Self-assembled Ge nanodots with areal number density up to 2.33× 1010 cm-2 and aspect ratio larger than 0.12 are prepared by ion beam sputtering deposition. The dot density, a function of deposition rate and Ge c...Self-assembled Ge nanodots with areal number density up to 2.33× 1010 cm-2 and aspect ratio larger than 0.12 are prepared by ion beam sputtering deposition. The dot density, a function of deposition rate and Ge coverage, is observed to be limited mainly by the transformation from two-dimensional precursors to three-dimensional islands, and to be associated with the adatom behaviors of attachment and detachment from the islands. An unusual increasing temperature dependence of nanodot density is also revealed when a high ion energy is employed in sputtering deposition, and is shown to be related to the breaking down of the superstrained wetting layer. This result is attributed to the interaction between energetic atoms and the growth surface, which mediates the island nucleation.展开更多
Nanoscale thick amorphous Ni-Cr alloy thin films were fabricated by low-energy ion beam sputtering technology; then the as-deposited samples experienced rapid thermal process to realize the transformation from amorpho...Nanoscale thick amorphous Ni-Cr alloy thin films were fabricated by low-energy ion beam sputtering technology; then the as-deposited samples experienced rapid thermal process to realize the transformation from amorphous to crystalline state. The film thickness was measured with a-stylus surface profiler, the structure and the compositions of the films were confirmed by low angle X-ray diffraction and scanning auger electron microprobe respectively, and the surface topography was characterized by scanning electron microscope and scanning probe microscope. Electrical property of the films was measured by fourpoint probe. The experimental results illustrate that the combined processes of ion beam sputtering and rajid thermal process are effective for fabrication nanoscale Ni-Cr alloy thin film with good properties.展开更多
Since the discovery of high T;super-conductor, much effort was made toits application. More and more evidencehas revealed that most promising fieldof high T;superconductor first to havesuccess must be the microelectro...Since the discovery of high T;super-conductor, much effort was made toits application. More and more evidencehas revealed that most promising fieldof high T;superconductor first to havesuccess must be the microelectronics andcomputer. Superconductor films for mi-croelectronic application are preparedby PVD method, such as electron beamevaporation, pulsed laser evaporation andmagnetron sputtering. In this paper, thepreliminary results of ion beam sputteringdeposition of YBaCuO film are reported展开更多
Fe-N films were prepared on Si substrate by dual ion beam sputtering (DIBS). It is found that the crystal structure of the films varies from α-Fe, to ε-Fe2-3N, ε-Fe2-3N +γ-Fe4N, and finally γ'-Fe4N with the i...Fe-N films were prepared on Si substrate by dual ion beam sputtering (DIBS). It is found that the crystal structure of the films varies from α-Fe, to ε-Fe2-3N, ε-Fe2-3N +γ-Fe4N, and finally γ'-Fe4N with the increase in substrate temperature (TS). The magnetic properties of the films were investigated by a vibrating sample magnetometer (VSM). The structure of the films is insensitive to the ratios of N2/Ar in main ion source(MIS), and is mainly influenced by the substrate temperature (Ts).展开更多
Cu2ZnSnS4 (CZTS) thin films were successfully prepared by sulfurization of ion bean sputtered precursors on soda-lime glass substrate. The single phase of stannite-type structure CZTS films were obtained as revealed i...Cu2ZnSnS4 (CZTS) thin films were successfully prepared by sulfurization of ion bean sputtered precursors on soda-lime glass substrate. The single phase of stannite-type structure CZTS films were obtained as revealed in EDS and XRD analysis when the ratios of the constituents of CZTS thin films are close to stoichiometric by optimizing the conditions of precursor preparation and sulfurization. A low sheet resistivity as about 0.156 Ω·cm and a high absorption coefficient as 1×104 cm-1 were achieved in this method by Hall effect measurements and UV-VIS spectrophotometer. The optical band-gap energy of the CZTS sample is about 1.51 eV, which is very close to the optimum value for a solar-cell absorber.展开更多
Nb-doped SrTiO3 (STNO) films were grown on (001)-oriented LaAlO3 substrates by a reactive ion beam sputter deposition at various mixing ratios (OMRs) with a substrate temperature of 800oC. The STNO films exhibited goo...Nb-doped SrTiO3 (STNO) films were grown on (001)-oriented LaAlO3 substrates by a reactive ion beam sputter deposition at various mixing ratios (OMRs) with a substrate temperature of 800oC. The STNO films exhibited good crystallinity with an epitaxial orientation as characterized by high-resolution X-ray diffraction, grazing-incidence X-ray diffraction, and in-plane pole figure analysis. A decrease of out-of-plane and in-plane lattice constants was observed with an increase of OMR. The surface morphology of the STNO films showed a very dense fine-grain structure. The root-mean-square roughness was found to be increased as the OMR increased. Moreover, the elemental compositions of the STNO films were examined by X-ray photoelectron spectroscopy.展开更多
Cu-W thin film with high W content was deposited by dual-target DC-magnetron co-sputtering technology.Effects of the substrates surface treating technique on the adhesive strength of Cu-W thin films were studied.It is...Cu-W thin film with high W content was deposited by dual-target DC-magnetron co-sputtering technology.Effects of the substrates surface treating technique on the adhesive strength of Cu-W thin films were studied.It is found that the technique of ion beam assisting bombardment implanting of W particles can remarkably improve the adhesive property of Cu-W thin films. Indentation and scratching test show that,the critical load is doubled over than the sample only sputter-cleaned by ion beam.The enhancing mechanism of ion beam assisting bombardment implanting of Cu-W thin films was analyzed.With the help of mid-energy Ar+ion beam,W atoms can diffuse into the Fe-substrate surface layer;Fe atoms in the substrate surface layer and W atoms interlace with one another;and microcosmic mechanical meshing and diffusing combination on atom-scale among the Fe and W atoms through the film/substrate interface can be formed.The wettability and thermal expansion properties of the W atoms diffusion zone containing plentiful W atoms are close to those of pure W or W-based Cu-W film.展开更多
ZrO2 films on NaCl(100) substrate produced by oxygen ion bombardment and argon ion sputtering of Zr are analysed using TEM, XRD and XPS. The result of TEM shows that only cubic phase exists for the ZrO2 film produced ...ZrO2 films on NaCl(100) substrate produced by oxygen ion bombardment and argon ion sputtering of Zr are analysed using TEM, XRD and XPS. The result of TEM shows that only cubic phase exists for the ZrO2 film produced by oxygen ion bombardment with 30μA/cm2 and 200eV, while the XRD result shows that there seems to exhibit a small quanitity of monoclinic phase apart from cubic one under the production condition of oxygen ion of 25μA/cm2, 100eV.展开更多
he present paper focuses on the modifying effects of ion beam mixing, ion im-planting and ion sputtering on hydrogen evolution electrodes. It was discovered thatthe four types of electrodes possessed excellent catalyt...he present paper focuses on the modifying effects of ion beam mixing, ion im-planting and ion sputtering on hydrogen evolution electrodes. It was discovered thatthe four types of electrodes possessed excellent catalytic activity in acid or alkalinemedia and potential stability in long term electrolysis of water under high currentdensity. Their stability and applying life-span greatly surpass those of other elec-trodes activated by electrodepositing and other method. The effects of temperatureand roughness on function of electrodes were also examined. XPS and AES wereapplied to analyse the surface composition and bond states of the electrodes, andthe distribution of concentration varying with depth, and to explain the law of theexperiments .展开更多
ZrO2 films on NaCl(100) substrate produced by oxygen ion bombardment and argon ion sputtering of Zr are analysed using TEM, XRD and XPS. The result of TEM shows that only cubic phase exists for the ZrO2 film produced ...ZrO2 films on NaCl(100) substrate produced by oxygen ion bombardment and argon ion sputtering of Zr are analysed using TEM, XRD and XPS. The result of TEM shows that only cubic phase exists for the ZrO2 film produced by oxygen ion bombardment with 30μA/cm2 and 200eV, while the XRD result shows that there seems to exhibit a small quanitity of monoclinic phase apart from cubic one under the production condition of oxygen ion of 25μA/cm2, 100eV.展开更多
Preliminary tribo-mechanical properties of IBED filmsof GCr15 bearing steels have been studied in this paperalong with the comparison between IBED films and PVDfilms as well as non-implanted surface in wear resis-tanc...Preliminary tribo-mechanical properties of IBED filmsof GCr15 bearing steels have been studied in this paperalong with the comparison between IBED films and PVDfilms as well as non-implanted surface in wear resis-tance,micro-hardness,friction and surface morpholo-gy.Experiments gave a consistent picture and statedclearly that TIN films can really improve the tribo-me-chanical properties of materials and have practical usesin a certain sense.However,further theoretical and ex-perimental studies must be performed in respect thatthere are some defects on IBED films.展开更多
Cr-Cu-N coatings with copper content from 0 at%to 6.8 at%were deposited on silicon and M2 steel by ion beam assisted magnetron sputtering.The microstructure and composition of the coatings were characterized using SEM...Cr-Cu-N coatings with copper content from 0 at%to 6.8 at%were deposited on silicon and M2 steel by ion beam assisted magnetron sputtering.The microstructure and composition of the coatings were characterized using SEM,GDOES,XRD and XPS.The mechanical properties of the coatings were tested on a standard hardness tester.The tribological behavior of the coatings in dry wear condition was studied by means of ball-on-disc wear test.The experimental results show that addition of copper can restrict the columnar crystal growing to a certain degree.XRD and XPS analysis indicate that coatings are mainly composed of Cr and CrN phase.Cu is mainly existed in a free state in the coatings.Copper adding has no obvious effects on the hardness of the coatings.However,the coatings fracture toughness can be improved by doped copper.The coefficient of friction of the coatings against bearing steel is in the range of 0.25-0.6 changing with the copper content.The coating with 2.6 at%copper shows the lowest coefficient of friction about 0.25 and wear rate which is about one tenth of that of the coating with 6.8 at%copper.The higher coefficient of friction and wear rate of the coating with 6.8at%copper may be attributed to its lower bonding strength.展开更多
Vanadium dioxide thin films were fabricated through annealing vanadium oxide thin films deposited by dual ion beam sputtering. X-ray diffraction (XRD), atom force microscopy (AFM), and Fourier transform infrared s...Vanadium dioxide thin films were fabricated through annealing vanadium oxide thin films deposited by dual ion beam sputtering. X-ray diffraction (XRD), atom force microscopy (AFM), and Fourier transform infrared spectrum (FTIR) were employed to measure the crystalline structure, surface morphology, and infrared optical transmittance. The phase transition properties were characterized by transmittance. The results show that the annealed vanadium oxide thin film is composed of monoclinic VO2, with preferred orientation of (011). The maximum of transmittance change is beyond 65% as the temperature increases from 20 to 80 C. The reversible changes in optical transmittance against temperature were observed. The change rate of transmittance at short wavelength is higher than that at long wavelength at the same temperature across semiconductor-metal phase transition. This phenomenon was discussed using diffraction effect.展开更多
1 Introduction Recently much attention has been devoted to the study on the deposition and properties of oxide films. Oxide thin films, such as MgO, SiO<sub>2</sub> and ZrO<sub>2</sub>, not onl...1 Introduction Recently much attention has been devoted to the study on the deposition and properties of oxide films. Oxide thin films, such as MgO, SiO<sub>2</sub> and ZrO<sub>2</sub>, not only can be used as insulating layers in electronic devices but also act as buffer layers which can effectively obstruct the interface reaction between substrates and films or different layers. Moreover, in the technology of multilayer structures and Josephson junctions, it is also needed to grow insulating layers with perfect epitaxial structure. Up to now, it has been experimentally proved that a variety of oxide thin films can be used as buffer layers展开更多
The single-sided and dual-sided high reflective mirrors were deposited with ion-beam sputtering (IBS). When the incident light entered with 45°, the reflectance of p-polarized light at 1064 nm exceeded 99.5%. S...The single-sided and dual-sided high reflective mirrors were deposited with ion-beam sputtering (IBS). When the incident light entered with 45°, the reflectance of p-polarized light at 1064 nm exceeded 99.5%. Spectrum was gained by spectrometer and weak absorption of coatings was measured by surface thermal lensing (STL) technique. Laser-induced damage threshold (LIDT) was determined and the damage morphology was observed with Lecia-DMRXE microscope simultaneously. The profile of coatings was measured with Mark III-GPI digital interferometer. It was found that the reflectivity of mirror exceeded 99.9% and its absorption was as low as 14 ppm. The reflective bandwidth of the dual-sided sample was about 43 nm wider than that of single-sided sample, and its LIDT was as high as 28 J/cm^2, which was 5 J/cm^2 higher than that of single-sided sample. Moreover, the profile of dual-sided sample was better than that of substrate without coatings.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61235011)the Science Foundation of the Science and Technology Commission of Tianjin Municipality,China(Grant Nos.13JCYBJC17300 and 12JCQNIC01200)
文摘Diamond-like carbon (DLC) thin film is one of the most widely used optical thin films. The fraction of chemical bondings has a great influence on the properties of the DLC film. In this work, DLC thin films are prepared by ion-beam sputtering deposition in Ar and CH4 mixtures with graphite as the target. The influences of the ion-beam voltage on the surface morphology, chemical structure, mechanical and infrared optical properties of the DLC films are investigated by atomic force microscopy (AFM), Raman spectroscopy, nanoindentation, and Fourier transform infrared (FTIR) spec- troscopy, respectively. The results show that the surface of the film is uniform and smooth. The film contains sp2 and sp3 hybridized carbon bondings. The film prepared by lower ion beam voltage has a higher sp3 bonding content. It is found that the hardness of DLC films increases with reducing ion-beam voltage, which can be attributed to an increase in the fraction of sp3 carbon bondings in the DLC film. The optical constants can be obtained by the whole infrared optical spectrum fitting with the transmittance spectrum. The refractive index increases with the decrease of the ion-beam voltage, while the extinction coefficient decreases.
基金Project supported by the Joint Fund of National Natural Science Foundation of China and Yunnan Province, China (Grant No. U1037604)the Applied Basic Research Foundations of Yunnan Province, China (Grant No. 2009CD003)the Scientific Research Foundation of Yunnan University, China (Grant No. 2009E28Q)
文摘Self-assembled Ge nanodots with areal number density up to 2.33× 1010 cm-2 and aspect ratio larger than 0.12 are prepared by ion beam sputtering deposition. The dot density, a function of deposition rate and Ge coverage, is observed to be limited mainly by the transformation from two-dimensional precursors to three-dimensional islands, and to be associated with the adatom behaviors of attachment and detachment from the islands. An unusual increasing temperature dependence of nanodot density is also revealed when a high ion energy is employed in sputtering deposition, and is shown to be related to the breaking down of the superstrained wetting layer. This result is attributed to the interaction between energetic atoms and the growth surface, which mediates the island nucleation.
基金the National Natural Science Foundation of China(No.60371046)
文摘Nanoscale thick amorphous Ni-Cr alloy thin films were fabricated by low-energy ion beam sputtering technology; then the as-deposited samples experienced rapid thermal process to realize the transformation from amorphous to crystalline state. The film thickness was measured with a-stylus surface profiler, the structure and the compositions of the films were confirmed by low angle X-ray diffraction and scanning auger electron microprobe respectively, and the surface topography was characterized by scanning electron microscope and scanning probe microscope. Electrical property of the films was measured by fourpoint probe. The experimental results illustrate that the combined processes of ion beam sputtering and rajid thermal process are effective for fabrication nanoscale Ni-Cr alloy thin film with good properties.
文摘Since the discovery of high T;super-conductor, much effort was made toits application. More and more evidencehas revealed that most promising fieldof high T;superconductor first to havesuccess must be the microelectronics andcomputer. Superconductor films for mi-croelectronic application are preparedby PVD method, such as electron beamevaporation, pulsed laser evaporation andmagnetron sputtering. In this paper, thepreliminary results of ion beam sputteringdeposition of YBaCuO film are reported
基金Jiangsu Province key laboratory of thin film with Grant No. K2021.
文摘Fe-N films were prepared on Si substrate by dual ion beam sputtering (DIBS). It is found that the crystal structure of the films varies from α-Fe, to ε-Fe2-3N, ε-Fe2-3N +γ-Fe4N, and finally γ'-Fe4N with the increase in substrate temperature (TS). The magnetic properties of the films were investigated by a vibrating sample magnetometer (VSM). The structure of the films is insensitive to the ratios of N2/Ar in main ion source(MIS), and is mainly influenced by the substrate temperature (Ts).
基金This work was financially supported by the National Natural Science Foundation (No.10574106), the Science & Technology Plan of Guangdong Province (No.2003C105005) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Chinese State Education Ministry (No.(2004)176).
文摘Cu2ZnSnS4 (CZTS) thin films were successfully prepared by sulfurization of ion bean sputtered precursors on soda-lime glass substrate. The single phase of stannite-type structure CZTS films were obtained as revealed in EDS and XRD analysis when the ratios of the constituents of CZTS thin films are close to stoichiometric by optimizing the conditions of precursor preparation and sulfurization. A low sheet resistivity as about 0.156 Ω·cm and a high absorption coefficient as 1×104 cm-1 were achieved in this method by Hall effect measurements and UV-VIS spectrophotometer. The optical band-gap energy of the CZTS sample is about 1.51 eV, which is very close to the optimum value for a solar-cell absorber.
文摘Nb-doped SrTiO3 (STNO) films were grown on (001)-oriented LaAlO3 substrates by a reactive ion beam sputter deposition at various mixing ratios (OMRs) with a substrate temperature of 800oC. The STNO films exhibited good crystallinity with an epitaxial orientation as characterized by high-resolution X-ray diffraction, grazing-incidence X-ray diffraction, and in-plane pole figure analysis. A decrease of out-of-plane and in-plane lattice constants was observed with an increase of OMR. The surface morphology of the STNO films showed a very dense fine-grain structure. The root-mean-square roughness was found to be increased as the OMR increased. Moreover, the elemental compositions of the STNO films were examined by X-ray photoelectron spectroscopy.
基金Project(05JJ3005)supported by the Natural Science Foundation of Hunan Province,China
文摘Cu-W thin film with high W content was deposited by dual-target DC-magnetron co-sputtering technology.Effects of the substrates surface treating technique on the adhesive strength of Cu-W thin films were studied.It is found that the technique of ion beam assisting bombardment implanting of W particles can remarkably improve the adhesive property of Cu-W thin films. Indentation and scratching test show that,the critical load is doubled over than the sample only sputter-cleaned by ion beam.The enhancing mechanism of ion beam assisting bombardment implanting of Cu-W thin films was analyzed.With the help of mid-energy Ar+ion beam,W atoms can diffuse into the Fe-substrate surface layer;Fe atoms in the substrate surface layer and W atoms interlace with one another;and microcosmic mechanical meshing and diffusing combination on atom-scale among the Fe and W atoms through the film/substrate interface can be formed.The wettability and thermal expansion properties of the W atoms diffusion zone containing plentiful W atoms are close to those of pure W or W-based Cu-W film.
文摘ZrO2 films on NaCl(100) substrate produced by oxygen ion bombardment and argon ion sputtering of Zr are analysed using TEM, XRD and XPS. The result of TEM shows that only cubic phase exists for the ZrO2 film produced by oxygen ion bombardment with 30μA/cm2 and 200eV, while the XRD result shows that there seems to exhibit a small quanitity of monoclinic phase apart from cubic one under the production condition of oxygen ion of 25μA/cm2, 100eV.
文摘he present paper focuses on the modifying effects of ion beam mixing, ion im-planting and ion sputtering on hydrogen evolution electrodes. It was discovered thatthe four types of electrodes possessed excellent catalytic activity in acid or alkalinemedia and potential stability in long term electrolysis of water under high currentdensity. Their stability and applying life-span greatly surpass those of other elec-trodes activated by electrodepositing and other method. The effects of temperatureand roughness on function of electrodes were also examined. XPS and AES wereapplied to analyse the surface composition and bond states of the electrodes, andthe distribution of concentration varying with depth, and to explain the law of theexperiments .
文摘ZrO2 films on NaCl(100) substrate produced by oxygen ion bombardment and argon ion sputtering of Zr are analysed using TEM, XRD and XPS. The result of TEM shows that only cubic phase exists for the ZrO2 film produced by oxygen ion bombardment with 30μA/cm2 and 200eV, while the XRD result shows that there seems to exhibit a small quanitity of monoclinic phase apart from cubic one under the production condition of oxygen ion of 25μA/cm2, 100eV.
文摘Preliminary tribo-mechanical properties of IBED filmsof GCr15 bearing steels have been studied in this paperalong with the comparison between IBED films and PVDfilms as well as non-implanted surface in wear resis-tance,micro-hardness,friction and surface morpholo-gy.Experiments gave a consistent picture and statedclearly that TIN films can really improve the tribo-me-chanical properties of materials and have practical usesin a certain sense.However,further theoretical and ex-perimental studies must be performed in respect thatthere are some defects on IBED films.
基金The National Natural Science Foundation of China(50771070)Shanxi Province Science and Technology Key Project(20100321078-02)
文摘Cr-Cu-N coatings with copper content from 0 at%to 6.8 at%were deposited on silicon and M2 steel by ion beam assisted magnetron sputtering.The microstructure and composition of the coatings were characterized using SEM,GDOES,XRD and XPS.The mechanical properties of the coatings were tested on a standard hardness tester.The tribological behavior of the coatings in dry wear condition was studied by means of ball-on-disc wear test.The experimental results show that addition of copper can restrict the columnar crystal growing to a certain degree.XRD and XPS analysis indicate that coatings are mainly composed of Cr and CrN phase.Cu is mainly existed in a free state in the coatings.Copper adding has no obvious effects on the hardness of the coatings.However,the coatings fracture toughness can be improved by doped copper.The coefficient of friction of the coatings against bearing steel is in the range of 0.25-0.6 changing with the copper content.The coating with 2.6 at%copper shows the lowest coefficient of friction about 0.25 and wear rate which is about one tenth of that of the coating with 6.8 at%copper.The higher coefficient of friction and wear rate of the coating with 6.8at%copper may be attributed to its lower bonding strength.
基金supported by the National High-Tech Research and Development Program of China(No.2008AA031401)the National Natural Science Foundation of China (No.60771019)+2 种基金the Natural Science Foundation of Tianjin, China (No.08JCZD-JC17500)the StateKey Lab on Integrated Optoelectronics (No.2010KFB001)The Research Fund for the Doctoral Program of Higher Education of China (No.20100032120029)
文摘Vanadium dioxide thin films were fabricated through annealing vanadium oxide thin films deposited by dual ion beam sputtering. X-ray diffraction (XRD), atom force microscopy (AFM), and Fourier transform infrared spectrum (FTIR) were employed to measure the crystalline structure, surface morphology, and infrared optical transmittance. The phase transition properties were characterized by transmittance. The results show that the annealed vanadium oxide thin film is composed of monoclinic VO2, with preferred orientation of (011). The maximum of transmittance change is beyond 65% as the temperature increases from 20 to 80 C. The reversible changes in optical transmittance against temperature were observed. The change rate of transmittance at short wavelength is higher than that at long wavelength at the same temperature across semiconductor-metal phase transition. This phenomenon was discussed using diffraction effect.
文摘1 Introduction Recently much attention has been devoted to the study on the deposition and properties of oxide films. Oxide thin films, such as MgO, SiO<sub>2</sub> and ZrO<sub>2</sub>, not only can be used as insulating layers in electronic devices but also act as buffer layers which can effectively obstruct the interface reaction between substrates and films or different layers. Moreover, in the technology of multilayer structures and Josephson junctions, it is also needed to grow insulating layers with perfect epitaxial structure. Up to now, it has been experimentally proved that a variety of oxide thin films can be used as buffer layers
文摘The single-sided and dual-sided high reflective mirrors were deposited with ion-beam sputtering (IBS). When the incident light entered with 45°, the reflectance of p-polarized light at 1064 nm exceeded 99.5%. Spectrum was gained by spectrometer and weak absorption of coatings was measured by surface thermal lensing (STL) technique. Laser-induced damage threshold (LIDT) was determined and the damage morphology was observed with Lecia-DMRXE microscope simultaneously. The profile of coatings was measured with Mark III-GPI digital interferometer. It was found that the reflectivity of mirror exceeded 99.9% and its absorption was as low as 14 ppm. The reflective bandwidth of the dual-sided sample was about 43 nm wider than that of single-sided sample, and its LIDT was as high as 28 J/cm^2, which was 5 J/cm^2 higher than that of single-sided sample. Moreover, the profile of dual-sided sample was better than that of substrate without coatings.