期刊文献+
共找到1,379篇文章
< 1 2 69 >
每页显示 20 50 100
Tuning the electronic conductance of REH_(x)(RE=Nd,Ce,Pr)by structural deformation
1
作者 Shangshang Wang Weijin Zhang +6 位作者 Jirong Cui Shukun Liu Hong Wen Jianping Guo Teng He Hujun Cao Ping Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期440-445,I0010,共7页
Hydride ion(H-)conductors have drawn much attention due to their potential applications in hydrideion-based devices.Rare earth metal hydrides(REH_(x))have fast H-conduction which,unfortunately,is accompanied by detrim... Hydride ion(H-)conductors have drawn much attention due to their potential applications in hydrideion-based devices.Rare earth metal hydrides(REH_(x))have fast H-conduction which,unfortunately,is accompanied by detrimental electron conduction preventing their application as ion conductors.Here,REH_(x)(RE=Nd,Ce,and Pr)with varied grain sizes,rich grain boundaries,and defects have been prepared by ball milling and subsequent sintering.The electronic conductivity of the ball-milled REH_(x)samples can be reduced by 2-4 orders of magnitude compared with the non-ball-milled samples.The relationship of electron conduction and miscrostructures in REH_(x)is studied and discussed based on experimental data and previously-proposed classical and quantum theories.The H-conductivity of all REH_(x)is about 10^(-4)to 10^(-3)S cm^(-1)at room temperature,showing promise for the development of H-conductors and their applications in clean energy storage and conversion. 展开更多
关键词 Hydride ion conduction Electron conduction Nanosized grain Crystal defect Electron scattering
下载PDF
Synthesis and Conductivity Characterization of Anti-Perovskite Na3OX Solid Electrolytes for All Solid Na-Ion Batteries
2
作者 Wei Shi Masataka Ohta +3 位作者 Hiroaki Asakawa Yuki Osaki Mariko Murayama Xinwei Zhao 《Optics and Photonics Journal》 2023年第7期189-198,共10页
Solid electrolytes for all solid sodium-ion batteries have been attracting much attention as an alternative energy storage system, which have the advantage of being extremely safe because it can be charged quickly and... Solid electrolytes for all solid sodium-ion batteries have been attracting much attention as an alternative energy storage system, which have the advantage of being extremely safe because it can be charged quickly and is nonflammable. We have synthesized anti-perovskite type Na<sub>3</sub>OX (X = Br, and I) electrolytes with high purity, by reactions of halogen mixtures with sodium oxides. After mixing, it was filled in an alumina crucible and heated for 6 hours at 330°C. It was confirmed that a large crystal strain was introduced by eutectication, which might reduce the activation energy of Na ion conduction and lead to an improvement of the conductivity. A relatively higher ionic conductivity of σ = 1.55 × 10<sup>-7</sup> S/cm at 60°C has been obtained for Na<sub>3</sub>OBr<sub>0.6</sub>I<sub>0.4</sub>, which is about three orders higher than that in literature. A different ratio of X (X = Br, I) ions was added into sodium oxide to make the Na<sub>3</sub>OX crystal. The influence of strain introduction on optimizing the bottleneck and improving the conductivity was discussed. 展开更多
关键词 Sodium ion Battery Solid Electrolyte ionic conductivity Anti-Perovskite
下载PDF
Continuous changes in electrical conductivity of sodium aluminate solution in seeded precipitation 被引量:3
3
作者 刘桂华 李铮 +3 位作者 齐天贵 周秋生 彭志宏 李小斌 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第12期4160-4166,共7页
The mechanism of seeded precipitation of sodium aluminate solution was studied by measuring the seeded-precipitation rate and electrical conductivity online, as well as calculating the activity and fraction of ion pai... The mechanism of seeded precipitation of sodium aluminate solution was studied by measuring the seeded-precipitation rate and electrical conductivity online, as well as calculating the activity and fraction of ion pair. The results show that the electrical conductivity of sodium aluminate slurry linearly decreases with increasing aluminum hydroxide addition. Moreover, both the electrical conductivity of slurry and the difference in electrical conductivity between sodium aluminate solution and slurry remarkably decline in the first 60 min before gradually increasing in the preliminary 10 h and finally reaching almost the same level after 10 h. In low Na2 O concentration solution the activities of Na OH and Na Al(OH)4 in seeded precipitation are high, which can enlarge the difference in conductivity between slurry and solution. Additionally, more ion pairs exist in solution in preliminary seeded precipitation, and the adsorption of Na+Al(OH)4- on seed surface is likely to break the equilibrium of ion pair formation and to decrease the difference in conductivity in preliminary seeded precipitation. 展开更多
关键词 sodium aluminate solution seeded precipitation electrical conductivity activity coefficient ion pair
下载PDF
THE SCATTERING THEORY OF IONIC CONDUCTIVITY OF TERNARY GLASS
4
作者 唐多强 宋威 陈荣金 《Transactions of Tianjin University》 EI CAS 1997年第2期110-112,共3页
The physical expression of electrical conductivity of ternary glass can be obtained by the physical scattering theory of conducting ions by the defects in the glass. The scattering area of ion by the nucleus is given ... The physical expression of electrical conductivity of ternary glass can be obtained by the physical scattering theory of conducting ions by the defects in the glass. The scattering area of ion by the nucleus is given by the law of Rutherford in atomic physics. By this theory, the physical meaning of the microprocess of ionic conductivity of ternary glass is apparent. 展开更多
关键词 activation energy scattering effect electric conductivity of ions
下载PDF
Recent Advances on Polyoxometalate-Based Ion-Conducting Electrolytes for Energy-Related Devices 被引量:2
5
作者 Dongming Cheng Ke Li +1 位作者 Hongying Zang Jiajia Chen 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期262-274,共13页
Solid-state electrolytes have attracted considerable attention in new energyrelated devices due to their high safety and broad application platform.Polyoxometalates(POMs)are a kind of molecular-level cluster compounds... Solid-state electrolytes have attracted considerable attention in new energyrelated devices due to their high safety and broad application platform.Polyoxometalates(POMs)are a kind of molecular-level cluster compounds with unique structures.In recent years,owing to their abundant physicochemical properties(including high ionic conductivity and reversible redox activity),POMs have shown great potential in becoming a new generation of solid-state electrolytes.In this review,an overview is investigated about how POMs have evolved as ion-conducting materials from basic research to novel solid-state electrolytes in energy devices.First,some expressive POM-based ion-conducting materials in recent years are introduced and classified,mainly inspecting their structural and functional relationship.After that,it is further focused on the application of these ionconducting electrolytes in the fields of proton exchange membranes,supercapacitors,and ion batteries.In addition,some properties of POMs(such as inherent dimension,capable of forming stable hydrogen bonds,and reversible bonding to water molecules)enable these functional POM-based electrolytes to be employed in innovative applications such as ion selection,humidity sensing,and smart materials.Finally,some fundamental recommendations are given on the current opportunities and challenges of POM-based ion-conducting electrolytes. 展开更多
关键词 energy devices ion conduction POLYOXOMETALATES solid-state electrolytes
下载PDF
Design of multifunctional polymeric binders in silicon anodes for lithium‐ion batteries 被引量:2
6
作者 Masytha Nuzula Ramdhiny Ju‐Won Jeon 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期140-163,共24页
Silicon(Si)is a promising anode material for lithium‐ion batteries(LIBs)owing to its tremendously high theoretical storage capacity(4200 mAh g−1),which has the potential to elevate the energy of LIBs.However,Si anode... Silicon(Si)is a promising anode material for lithium‐ion batteries(LIBs)owing to its tremendously high theoretical storage capacity(4200 mAh g−1),which has the potential to elevate the energy of LIBs.However,Si anodes exhibit severe volume change during lithiation/delithiation processes,resulting in anode pulverization and delamination with detrimental growth of solid electrolyte interface layers.As a result,the cycling stability of Si anodes is insufficient for commercialization in LIBs.Polymeric binders can play critical roles in Si anodes by affecting their cycling stability,although they occupy a small portion of the electrodes.This review introduces crucial factors influencing polymeric binders'properties and the electrochemical performance of Si anodes.In particular,we emphasize the structure–property relationships of binders in the context of molecular design strategy,functional groups,types of interactions,and functionalities of binders.Furthermore,binders with additional functionalities,such as electrical conductivity and self‐healability,are extensively discussed,with an emphasis on the binder design principle. 展开更多
关键词 conductivity lithium‐ion batteries molecular interactions polymeric binders self‐healability Si anodes
下载PDF
Lithium ion conductivity of complex hydrides incorporating multiple closo–type complex anions 被引量:2
7
作者 Naoki Toyama Sangryun Kim +5 位作者 Hiroyuki Oguchi Toyoto Sato Shigeyuki Takagi Masaru Tazawa Genki Nogami Shin-ichi Orimo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第11期84-87,共4页
We report the lithium ionic conductivities of closo –type complex hydrides synthesized from various molar ratios of lithium borohydride(LiBH4) and decaborane(B10H14) as starting materials. The prepared closo –type c... We report the lithium ionic conductivities of closo –type complex hydrides synthesized from various molar ratios of lithium borohydride(LiBH4) and decaborane(B10H14) as starting materials. The prepared closo –type complex hydrides comprised [B12H12]^2-, [B11H11]^2-, and [B10H10]^2- complex anions. In addition, increasing the LiBH4 content in the starting materials increased the amounts of [B11H11]^2- and [B10H10]^2-, leading to an improved ion conductivity of the prepared sample. The present study offers useful insights into strategies for controlling the complex anion composition in emerging solid electrolytes of closo-type complex hydrides at the molecular level, and improving their ionic conductivities. 展开更多
关键词 Closo-type COMPLEX HYDRIDE Solid ELECTROLYTE Lithium ion conductivity MULTIPLE COMPLEX ANionS
下载PDF
Improving ionic conductivity of polymer-based solid electrolytes for lithium metal batteries 被引量:4
8
作者 Q.Yang A.Wang +1 位作者 J.Luo W.Tang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第3期202-215,共14页
Because of its superior safety and excellent processability,solid polymer electrolytes(SPEs)have attracted widespread attention.In lithium based batteries,SPEs have great prospects in replacing leaky and flammable liq... Because of its superior safety and excellent processability,solid polymer electrolytes(SPEs)have attracted widespread attention.In lithium based batteries,SPEs have great prospects in replacing leaky and flammable liquid electrolytes.However,the low ionic conductivity of SPEs cannot meet the requirements of high energy density systems,which is also an important obstacle to its practical application.In this respect,escalating charge carriers(i.e.Li^(+))and Li^(+)transport paths are two major aspects of improving the ionic conductivity of SPEs.This article reviews recent advances from the two perspectives,and the underlying mechanism of these proposed strategies is discussed,including increasing the Li^(+)number and optimizing the Li^(+)transport paths through increasing the types and shortening the distance of Li^(+)transport path.It is hoped that this article can enlighten profound thinking and open up new ways to improve the ionic conductivity of SPEs. 展开更多
关键词 Solid polymer electrolyte ion conductivity Charge carriers Transport paths Lithium battery
下载PDF
Synthesis and Conductivity of Oxyapatite Ionic Conductor La10-xVx(SiO4)6O3+x 被引量:3
9
作者 袁文辉 申荣平 李莉 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第2期328-332,共5页
Apatite-lanthanum silicate has attracted considerable interest in recent years due to its high oxide ion conductivity.In this paper,V-doped samples La10-xVx(SiO4) 6O3+x(0≤x≤1.5) were prepared by sol-gel method and t... Apatite-lanthanum silicate has attracted considerable interest in recent years due to its high oxide ion conductivity.In this paper,V-doped samples La10-xVx(SiO4) 6O3+x(0≤x≤1.5) were prepared by sol-gel method and the influences of V-dopant content on calcining temperature and conductivity were reported.The samples were characterized by thermal analysis(TG-DSC) ,X-ray diffraction(XRD) and scanning electron micrograph(SEM) . The apatite was obtained at 800°C,a relatively low temperature in comparison to 1500°C with the conventional solid-state method.The ceramic pellets sintered at 1200°C for 5 h showed a higher relative density than La9.33Si6O26 pellets sintered at 1400°C for 20 h.The conductivities of samples were measured by electrochemical impedance spectroscopy.The conductivity was improved with the increase of V-dopant content on La site. 展开更多
关键词 oxide ionic conductor sol-gel method interstitial oxygen ion conduction oxyapatite
下载PDF
Preparation of Solid Solutions [Li_(3x) La_(0.67-x) Y_y Ti_(1-2y) Nb_y O_3] and Its Lithium-ion Conductivity 被引量:1
10
作者 李荣华 陈睿婷 王文继 《Journal of Rare Earths》 SCIE EI CAS CSCD 2002年第5期475-478,共4页
Perovskite type lithium fast ion conductors of Li 3 x La 0.67- x Y y Ti 1-2 y Nb y O 3 system were prepared by solid state reaction. X Ray powder diffraction shows that a single phase ... Perovskite type lithium fast ion conductors of Li 3 x La 0.67- x Y y Ti 1-2 y Nb y O 3 system were prepared by solid state reaction. X Ray powder diffraction shows that a single phase perovskite solid solution with orthorhombic structure forms in the ranges of x =0.10, y <0.075. Over this composition range the another phase, Y 2O 3 hexagonal phase is found. AC impedance measurements indicate that the bulk conductivities and the total conductivities are of the order of 10 -4 S·cm -1 and 10 -5 S·cm -1 at 25 ℃ respectively. The compositions have low bulk activation energies of about 20 kJ·mol -1 and total activation energies of about 40 kJ·mol -1 in the temperature range of 298~523 K, respectively. 展开更多
关键词 rare earths PEROVSKITE bulk conductivity fast ion conductor
下载PDF
Enhanced ion conductivity and electrode–electrolyte interphase stability of porous Si anodes enabled by silicon nitride nanocoating for high-performance Li-ion batteries 被引量:3
11
作者 Shixiong Mei Siguang Guo +7 位作者 Ben Xiang Jiaguo Deng Jijiang Fu Xuming Zhang Yang Zheng Biao Gao Paul K Chu Kaifu Huo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期616-625,I0017,共11页
Silicon (Si) is a promising anode material for next-generation high-energy lithium-ion batteries (LIBs) due to its high capacity.However,the large volumetric expansion,poor ion conductivity and unstable solid electrol... Silicon (Si) is a promising anode material for next-generation high-energy lithium-ion batteries (LIBs) due to its high capacity.However,the large volumetric expansion,poor ion conductivity and unstable solid electrolyte interface (SEI) lead to rapid capacity fading and low rate performance.Herein,we report Si nitride (SiN) comprising stoichiometric Si_(3)N_(4) and Li-active anazotic SiN_(x) coated porous Si (p-Si@SiN)for high-performance anodes in LIBs.The ant-nest-like porous Si consisting of 3D interconnected Si nanoligaments and bicontinuous nanopores prevents pulverization and accommodates volume expansion during cycling.The Si_(3)N_(4) offers mechanically protective coating to endow highly structural integrity and inhibit superfluous formation of SEI.The fast ion conducting Li_(3)N generated in situ from lithiation of active SiN_(x) facilitates Li ion transport.Consequently,the p-Si@SiN anode has appealing electrochemical properties such as a high capacity of 2180 mAh g^(-1)at 0.5 A g^(-1) with 84%capacity retention after 200cycles and excellent rate capacity with discharge capacity of 721 mAh g^(-1) after 500 cycles at 5.0 A g^(-1).This work provides insights into the rational design of active/inactive nanocoating on Si-based anode materials for fast-charging and highly stable LIBs. 展开更多
关键词 Silicon anode ion conductivity Si_(3)N_(4) SiN_(x) Lithium-ion battery
下载PDF
Sensitive Determination of Metal Ions in Drinking Water by Capillary Electrophoresis Coupled with Contactless Conductivity Detection Using 18-Crown-6 Ether and Hexadecyltrimethylammonium Bromide as Complexing Reagents 被引量:1
12
作者 Wujuan Chen Fan Gao +5 位作者 Yi Zhang Yan Zhang Yi Li Yating Zhang Qingjiang Wang Pingang He 《American Journal of Analytical Chemistry》 2016年第11期737-747,共12页
A simple, economical, and sensitive capillary electrophoresis (CE) method integrated with capacitively coupled contactless conductivity detection was developed for the determination of metal ions such as K<sup>+... A simple, economical, and sensitive capillary electrophoresis (CE) method integrated with capacitively coupled contactless conductivity detection was developed for the determination of metal ions such as K<sup>+</sup>, Na<sup>+</sup>, Mg<sup>2+</sup>, Sr<sup>2+</sup>, Ca<sup>2+</sup> in drinking water. 18-Crown-6 ether and Hexadecyltrimethylammonium Bromide (CTAB) were employed as complexing reagents. The effects of electrolyte additives, citric acid buffer solution, and other separation conditions of CE were comprehensively investigated and carefully optimized. The best results were obtained in a running buffer solution composed of citric acid (12 mM), 18-crown-6 ether (0.2 mM), and CTAB (0.015 mM) at pH 3.5. Under these conditions, a complete separation of five metal ions was successfully achieved in less than 12 min. The limits of detection for the optimal procedure were determined to be in the range of 0.02 - 0.2 mg·L<sup>-1</sup>. The repeatability with respect to migration times and peak areas, expressed as relative standard deviations, was better than 2.3% and 5.1%, respectively. Evaluation of the efficiency of the methodology indicated that it was reliable for the determination of metal ions in six different brands of drinking water samples. 展开更多
关键词 Capillary Electrophoresis Contactless conductivity Detection Metal ions FOOD Drinking Water
下载PDF
Influence on Conductivity of Polyparaphenylene by Chemical Doping and Ion Implantation 被引量:1
13
作者 WANG Hui, WU Hong-cai (School of Electron. & Inform. Eng., Xi’an Jiaotong University, Xi’an 710049,CHN) 《Semiconductor Photonics and Technology》 CAS 1999年第2期114-118,共5页
Polyparaphenylene(PPP) is prepared by AlCl 3-CuCl 2 catalysts with benzene as the monomer and is doped by chemical method and N + ion implantation. The influences of the concentration, temperature and time of chemi... Polyparaphenylene(PPP) is prepared by AlCl 3-CuCl 2 catalysts with benzene as the monomer and is doped by chemical method and N + ion implantation. The influences of the concentration, temperature and time of chemical doping and the dose, energy and temperature of ion implantation, on PPP conductivity are investigated. The results showed that the conductivity of PPP can be improved 4~5 orders of magnitude by ion implantation and the conductivity of PPP can reach about 0.11 S·cm -1 by chemical doping. The comparison of stability of the material conductive behavior by using the two doping methods is presented. It shows that ion implantation is better than chemical doping in stabilizing the electric conductive behavior for the material. 展开更多
关键词 conducting Polymers ion Implantation Polyparaphenylene CLC number:O 631.23 O 632.7 TN304.52 Document code:A
下载PDF
Self-supported VO_(2)on polydopamine-derived pyroprotein-based fibers for ultrastable and flexible aqueous zinc-ion batteries
14
作者 Jeong Seok Yeon Sul Ki Park +10 位作者 Shinik Kim Santosh VMohite Won Il Kim Gun Jang Hyun-Seok Jang Jiyoung Bae Sang Moon Lee Won GHong Byung Hoon Kim Yeonho Kim Ho Seok Park 《Carbon Energy》 SCIE EI CAS CSCD 2024年第7期1-13,共13页
A conventional electrode composite for rechargeable zinc-ion batteries(ZIBs)includes a binder for strong adhesion between the electrode material and the current collector.However,the introduction of a binder leads to ... A conventional electrode composite for rechargeable zinc-ion batteries(ZIBs)includes a binder for strong adhesion between the electrode material and the current collector.However,the introduction of a binder leads to electrochemical inactivity and low electrical conductivity,resulting in the decay of the capacity and a low rate capability.We present a binder-and conducting agent-free VO_(2)composite electrode using in situ polymerization of dopamine on a flexible current collector of pyroprotein-based fibers.The as-fabricated composite electrode was used as a substrate for the direct growth of VO_(2)as a self-supported form on polydopamine-derived pyroprotein-based fibers(pp-fibers@VO_(2)(B)).It has a high conductivity and flexible nature as a current collector and moderate binding without conventional binders and conducting agents for the VO_(2)(B)cathode.In addition,their electrochemical mechanism was elucidated.Their energy storage is induced by Zn^(2+)/H^(+)coinsertion during discharging,which can be confirmed by the lattice expansion,the formation of by-products including Zn_(x)(OTf)_(y)(OH)_(2x−y)·nH_(2)O,and the reduction of V^(4+)to V^(3+).Furthermore,the assembled Zn//pp-fibers@VO_(2)(B)pouch cells have excellent flexibility and stable electrochemical performance under various bending states,showing application possibilities for portable and wearable power sources. 展开更多
关键词 aqueous battery binder free conducting agent‐free flexible electrode zinc‐ion battery
下载PDF
A layered multifunctional framework based on polyacrylonitrile and MOF derivatives for stable lithium metal anode
15
作者 Fanfan Liu Peng Zuo +5 位作者 Jing Li Pengcheng Shi Yu Shao Linwei Chen Yihong Tan Tao Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期282-288,I0007,共8页
Composite Li metal anodes based on three-dimensional(3D) porous frameworks have been considered as an effective material for achieving stable Li metal batteries with high energy density.However,uneven Li deposition be... Composite Li metal anodes based on three-dimensional(3D) porous frameworks have been considered as an effective material for achieving stable Li metal batteries with high energy density.However,uneven Li deposition behavior still occurs at the top of 3D frameworks owing to the local accumulation of Li ions.To promote uniform Li deposition without top dendrite growth,herein,a layered multifunctional framework based on oxidation-treated polyacrylonitrile(OPAN) and metal-organic framework(MOF) derivatives was proposed for rationally regulating the distribution of Li ions flux,nucleation sites,and electrical conductivity.Profiting from these merits,the OPAN/carbon nano fiber-MOF(CMOF) composite framework demonstrated a reversible Li plating/stripping behavior for 500 cycles with a stable Coulombic efficiency of around 99.0% at the current density of 2 mA/cm~2.Besides,such a Li composite anode exhibited a superior cycle lifespan of over 1300 h under a low polarized voltage of 18 mV in symmetrical cells.When the Li composite anode was paired with LiFePO_(4)(LFP) cathode,the obtained full cell exhibited a stable cycling over 500 cycles.Moreover,the COMSOL Multiphysics simulation was conducted to reveal the effects on homogeneous Li ions distribution derived from the above-mentioned OPAN/CMOF framework and electrical insulation/conduction design.These electrochemical and simulated results shed light on the difficulties of designing stable and safe Li metal anode via optimizing the 3D frameworks. 展开更多
关键词 Lithium metal anode Layered multifunctional framework ions flux redistribution Electrical insulation/conduction structure Uniform Li deposition
下载PDF
Structure, conductivity, and ion emission properties of RbAg4I5 solid electrolyte film prepared by pulsed laser deposition
16
作者 Jun-Lian Chen Wen-Bin Zuo +6 位作者 Xian-Wen Ke Alexander B Tolstoguzov Can-Xin Tian Neena Devi Ranjana Jha Gennady N Panin De-Jun Fu 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第6期126-130,共5页
We fabricated a silver ion emitter based on the solid state electrolyte film of RbAg4 I5 prepared by pulsed laser deposition. The RbAg4 I5 target for PLD process was mechano-chemically synthesized by high-energy ball ... We fabricated a silver ion emitter based on the solid state electrolyte film of RbAg4 I5 prepared by pulsed laser deposition. The RbAg4 I5 target for PLD process was mechano-chemically synthesized by high-energy ball milling in Ar atmosphere using β-AgI and RbI as raw materials. The ion-conducting properties of RbAg4 I5 were studied by alternating current(AC) impedance spectroscopy and the ionic conductivity at room temperature was estimated 0.21 S/m. The structure, morphology, and elemental composition of the RbAg4 I5 film were investigated. The Ag+ ion-conducting property of the prepared superioni-conductor film was exploited for ion–beam generation. The temperature and accelerating voltage dependences of the ion current were studied. Few nA current was obtained at the temperature of 196?C and the accelerating voltage of 10 kV. 展开更多
关键词 RbAg4 I5 ball MILLING SOLID state electrolyte film ion–beam source ionIC conductivity
下载PDF
Theoretical prediction of ion conductivity in solid state HfO_2
17
作者 张炜 陈文周 +1 位作者 孙久雨 姜振益 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第1期441-446,共6页
A theoretical prediction of ion conductivity for solid state HfO2 is carried out in analogy to ZrO2 based on the density functional calculation. Geometric and electronic structures of pure bulks exhibit similarity for... A theoretical prediction of ion conductivity for solid state HfO2 is carried out in analogy to ZrO2 based on the density functional calculation. Geometric and electronic structures of pure bulks exhibit similarity for the two materials. Negative formation enthalpy and negative vacancy formation energy are found for YSH (yttria-stabilized hafnia) and YSZ (yttria- stabilized zirconia), suggesting the stability of both materials. Low activation energies (below 0.7 eV) of diffusion are found in both materials, and YSH's is a little higher than that of YSZ. In addition, for both HfO2 and ZrO2, the supercells with native oxygen vacancies are also studied. The so-called defect states are observed in the supercells with neutral and +1 charge native vacancy but not in the +2 charge one. It can give an explanation to the relatively lower activation energies of yttria-doped oxides and +2 charge vacancy supercells. A brief discussion is presented to explain the different YSH ion conductivities in the experiment and obtained by us, and we attribute this to the different ion vibrations at different temperatures. 展开更多
关键词 ion conduction diffusion in solids ionic crystals density functional calculations
下载PDF
Conductivity and applications of Li-biphenyl-1,2-dimethoxyethane solution for lithium ion batteries
18
作者 褚赓 刘柏男 +4 位作者 罗飞 李文俊 陆浩 陈立泉 李泓 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第7期433-438,共6页
The total conductivity of Li-biphenyl-1,2-dimethoxyethane solution(Li_xBp(DME)_(9.65), Bp = biphenyl, DME = 1,2-dimethoxyethane, x = 0.25, 0.50, 1.00, 1.50, 2.00) is measured by impedance spectroscopy at a tempe... The total conductivity of Li-biphenyl-1,2-dimethoxyethane solution(Li_xBp(DME)_(9.65), Bp = biphenyl, DME = 1,2-dimethoxyethane, x = 0.25, 0.50, 1.00, 1.50, 2.00) is measured by impedance spectroscopy at a temperature range from 0℃ to 40℃. The Li_(1.50)Bp(DME)_(9.65) has the highest total conductivity 10.7 m S/cm. The conductivity obeys Arrhenius law with the activation energy(E_(a(x=0.50))= 0.014 eV, E_(a(x=1.00))= 0.046 eV). The ionic conductivity and electronic conductivity of Li_xBp(DME)_(9.65) solutions are investigated at 20℃ using the isothermal transient ionic current(ITIC) technique with an ion-blocking stainless steal electrode. The ionic conductivity and electronic conductivity of Li_(1.00)Bp(DME)_(9.65) are measured as 4.5 mS/cm and 6.6 mS/cm, respectively. The Li_(1.00)Bp(DME)_(9.65) solution is tested as an anode material of half liquid lithium ion battery due to the coexistence of electronic conductivity and ionic conductivity. The lithium iron phosphate(LFP) and Li_(1.5)Al_(0.5)Ti_(1.5)(PO_4)_3(LATP) are chosen to be the counter electrode and electrolyte, respectively. The assembled cell is cycled in the voltage range of 2.2 V-3.75 V at a current density of 50 mA/g. The potential of Li_(1.00)Bp(DME)_(9.65) solution is about 0.3 V vs. Li~+/Li, which indicates the solution has a strong reducibility. The Li_(1.00)Bp(DME)_(9.65) solution is also used to prelithiate the anode material with low first efficiency, such as hard carbon, soft carbon and silicon. 展开更多
关键词 lithium solution ionic and electronic conductivity flow lithium ion battery prelithiation
下载PDF
Effect of Pb Ions on the Ionic Conductivity of Some Silicate Glass Systems
19
作者 A.G.Mostafa Z.A.El-Hadi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第5期391-394,共4页
Conductivity of glasses in the systems SiO2.PbO.RO, (where R=Ca, Sr or Ba) was investigated between room temperature and 530 K. The dependence of log resistivity as well as the activation energy on the PbO content has... Conductivity of glasses in the systems SiO2.PbO.RO, (where R=Ca, Sr or Ba) was investigated between room temperature and 530 K. The dependence of log resistivity as well as the activation energy on the PbO content has been studied. Based on the present experimental results, the possible different conduction mechanisms in such glasses are discussed. It was postulated that Pb2+ ions may represent the major charge carrying species in these glasses. This assumption was confirmed by the calculations of the mean distance between the interstitial Pb2+ ions and the effective center of the O2- ions in the glass networks. The variation in the values of the density and the molar volume with PbO content is also discussed in view of the obtained activation energies for the studied glass-systems. 展开更多
关键词 ionic conductivity Pb ion Silicate glass systems
下载PDF
Synthesis,Structure and Ionic Conductivity of La_(2/3-x)Li_(3x)MoO_4
20
作者 蒋凯 王海霞 +4 位作者 任引哲 郭崇峰 孟健 任玉芳 苏锵 《Journal of Rare Earths》 SCIE EI CAS CSCD 2003年第4期458-460,共3页
A series of compounds, La 2/3- x Li 3 x MoO 4, were first prepared. Their structures are tetragonal scheelites with the cationic defects. The cell parameters a, c and values of c/a decrease with... A series of compounds, La 2/3- x Li 3 x MoO 4, were first prepared. Their structures are tetragonal scheelites with the cationic defects. The cell parameters a, c and values of c/a decrease with the increasing of the substitution amount (3 x ) of lithium ion. Cationic vacancies are getting more as Li + concentration is lower. The diffusion of lithium ion is predominant. The concentration of charge carriers increases with increasing the substitution amount (3 x ) of lithium ion, meanwhile, the concentration of cationic vacancies decreases. The conductivity approaches the best when the substitution amount (3 x ) of lithium ion is about 0.3. The conductivity of La 0.567 Li 0.3 MoO 4 is 6.5×10 -6 S·cm -1 at room temperature. 展开更多
关键词 inorganic material chemistry rare earth molybdate lithium ion conductor ionic conduction rare earths
下载PDF
上一页 1 2 69 下一页 到第
使用帮助 返回顶部