1 INTRODUCTIONKnowledge of the basic transport phenomena of ions in an ion exchange membrane isimportant for the application of such a membrane.Various studies on the developmentof mathematical models for predicting a...1 INTRODUCTIONKnowledge of the basic transport phenomena of ions in an ion exchange membrane isimportant for the application of such a membrane.Various studies on the developmentof mathematical models for predicting and correlating membrane transport rate havebeen published in recent years.More exact estimation of the diffusion coefficientshas been the subject of chief concern in many of these papers.For a bi-ionic systemwith the same valence,Sato et al.gave a method for estimating diffusion coefficients展开更多
1 INTRODUCTIONRapid and precise methods to obtain the diffusion coefficients of counter-ions are im-portant for the characterization of ion exchange membranes.Many theoreticaldescriptions of ion transport in ion excha...1 INTRODUCTIONRapid and precise methods to obtain the diffusion coefficients of counter-ions are im-portant for the characterization of ion exchange membranes.Many theoreticaldescriptions of ion transport in ion exchange membranes have been developed by usingthe principles of irreversible thermodynamics,or the Nernst-Planck equations.Fick’s law can also be used for the description of the transport of ions with equaldiffusivity.However,for counter-ions of different diffusivities,Nerst-Planck展开更多
CO_(2) electroreduction(CO_(2) ER)to high value-added chemicals is considered as a promising technology to achieve sustainable carbon neutralization.By virtue of the progressive research in recent years aiming at desi...CO_(2) electroreduction(CO_(2) ER)to high value-added chemicals is considered as a promising technology to achieve sustainable carbon neutralization.By virtue of the progressive research in recent years aiming at design and understanding of catalytic materials and electrolyte systems,the CO_(2) ER performance(such as current density,selectivity,stability,CO_(2) conversion,etc.)has been continually increased.Unfortunately,there has been relatively little attention paid to the large-scale CO 2 electrolyzers,which stand just as one obstacle,alongside series-parallel integration,challenging the practical application of this infant technology.In this review,the latest progress on the structures of low-temperature CO_(2) electrolyzers and scale-up studies was systematically overviewed.The influence of the CO_(2) electrolyzer configurations,such as the flow channel design,gas diffusion electrode(GDE)and ion exchange membrane(IEM),on the CO_(2) ER performance was further discussed.The review could provide inspiration for the design of large-scale CO_(2) electrolyzers so as to accelerate the industrial application of CO_(2) ER technology.展开更多
In the process of sulfuric acid production from pyrite, there is a lot of waste acid produced in fume washing with dilute acid. Acid recovery from this sort of waste sulfuric acid by diffusion dialysis is studied in t...In the process of sulfuric acid production from pyrite, there is a lot of waste acid produced in fume washing with dilute acid. Acid recovery from this sort of waste sulfuric acid by diffusion dialysis is studied in the paper. The mass transfer dialysis coefficient of sulfuric acid of the membrane AFX is measured, the effect of the flowrate of the feed and ratio of feed to water is investigated, and the two kinds of membrane (AFX and S203) are compared. The results show that diffusion dialysis process can separate the metal cation from sulfuric acid effectively, but it is difficult to separate non cation impurities as As - and F -. The contrast tests of the two membranes show that the dialysis mass transfer coefficient of the membrane AFX is larger, while capacity of the removing impurities of membrane S203 is somewhat better.展开更多
基金Supported by the Post-doctoral Foundation of China
文摘1 INTRODUCTIONKnowledge of the basic transport phenomena of ions in an ion exchange membrane isimportant for the application of such a membrane.Various studies on the developmentof mathematical models for predicting and correlating membrane transport rate havebeen published in recent years.More exact estimation of the diffusion coefficientshas been the subject of chief concern in many of these papers.For a bi-ionic systemwith the same valence,Sato et al.gave a method for estimating diffusion coefficients
基金Supported by a grant from Chinese Pastdoctoral Foundation
文摘1 INTRODUCTIONRapid and precise methods to obtain the diffusion coefficients of counter-ions are im-portant for the characterization of ion exchange membranes.Many theoreticaldescriptions of ion transport in ion exchange membranes have been developed by usingthe principles of irreversible thermodynamics,or the Nernst-Planck equations.Fick’s law can also be used for the description of the transport of ions with equaldiffusivity.However,for counter-ions of different diffusivities,Nerst-Planck
基金supported by National Key R&D Program of China(2020YFA0710200)the National Natural Science Foundation of China(21838010,22122814)+2 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2018064)State Key Laboratory of Multiphase complex systems,Institute of Process Engineering,Chinese Academy of Sciences(No.MPCS-2022-A-03)Innovation Academy for Green Manufacture Institute,Chinese Academy of Science(IAGM2020C14).
文摘CO_(2) electroreduction(CO_(2) ER)to high value-added chemicals is considered as a promising technology to achieve sustainable carbon neutralization.By virtue of the progressive research in recent years aiming at design and understanding of catalytic materials and electrolyte systems,the CO_(2) ER performance(such as current density,selectivity,stability,CO_(2) conversion,etc.)has been continually increased.Unfortunately,there has been relatively little attention paid to the large-scale CO 2 electrolyzers,which stand just as one obstacle,alongside series-parallel integration,challenging the practical application of this infant technology.In this review,the latest progress on the structures of low-temperature CO_(2) electrolyzers and scale-up studies was systematically overviewed.The influence of the CO_(2) electrolyzer configurations,such as the flow channel design,gas diffusion electrode(GDE)and ion exchange membrane(IEM),on the CO_(2) ER performance was further discussed.The review could provide inspiration for the design of large-scale CO_(2) electrolyzers so as to accelerate the industrial application of CO_(2) ER technology.
文摘In the process of sulfuric acid production from pyrite, there is a lot of waste acid produced in fume washing with dilute acid. Acid recovery from this sort of waste sulfuric acid by diffusion dialysis is studied in the paper. The mass transfer dialysis coefficient of sulfuric acid of the membrane AFX is measured, the effect of the flowrate of the feed and ratio of feed to water is investigated, and the two kinds of membrane (AFX and S203) are compared. The results show that diffusion dialysis process can separate the metal cation from sulfuric acid effectively, but it is difficult to separate non cation impurities as As - and F -. The contrast tests of the two membranes show that the dialysis mass transfer coefficient of the membrane AFX is larger, while capacity of the removing impurities of membrane S203 is somewhat better.