Aim To prepare the prolonged-released microspheres of mefformin hydrochloride. Methods Ion-exchange resin-drug mefformin hydrochloride complexes were prepared as core materials, and followed by coating using ethylcell...Aim To prepare the prolonged-released microspheres of mefformin hydrochloride. Methods Ion-exchange resin-drug mefformin hydrochloride complexes were prepared as core materials, and followed by coating using ethylcellulose (EC) by the emulsion solvent diffusion technique. The release rate of mefformin from the microcapsules was highly dependent on the encapsulating formulation, thus being used as an index for formulation screening. Orthogonal experiments were performed to optimize the coating formulation. Results The final chosen formulation for coating of mefformin microcapsules were as follows: ( 1 ) the ratio of EC (20cps) to EC (45cps) was 50:50; (2) the ratio of plasticizer to coating materials was 20% ;and (3) the ratio of resin-mefformin complexes to coating materials was 5 : 1. Conclusion The prolonged release microspheres of mefformin hydrochloride were successfully prepared.展开更多
The adsorption behavior of ion exchange resin D301 in the extraction of hexavalent molybdenum from high acidic leach solution was investigated. SEM, EDS and Raman spectra analyses were applied to studying the adsorpti...The adsorption behavior of ion exchange resin D301 in the extraction of hexavalent molybdenum from high acidic leach solution was investigated. SEM, EDS and Raman spectra analyses were applied to studying the adsorption capacity, reaction kinetics and possible adsorption mechanism in detail. Results showed that the adsorption capacity of D301 resin for molybdenum from high acidic leach solution was up to 463.63 mg/g. Results of the kinetic analysis indicated that the adsorption process was controlled by the particle diffusion with the activation energy 25.47 k J/mol(0.9-1.2 mm) and 20.38 k J/mol(0.6-0.9 mm). Furthermore, the molybdenum loaded on the resin could be eluted by using 2 mol/L ammonia hydroxide solution. Besides, dynamic continuous column experiments verified direct extraction of molybdenum from acidic leach solutions by ion exchange resin D301 and the upstream flow improved dynamic continuous absorption.展开更多
In this paper, humic acid (HA) was ultra-filtered into different molecular weight sections and was characterized by multielement analysis, UV254/TOC, FT-IR and three-dimensional fluorescence spectrometric. Since hum...In this paper, humic acid (HA) was ultra-filtered into different molecular weight sections and was characterized by multielement analysis, UV254/TOC, FT-IR and three-dimensional fluorescence spectrometric. Since humic acids of different molecular weights have different hydrophilic and molecular size, the maximum adsorption capacity of basic ion exchange resins appears on the humic acid whose molecular weight ranges from 6000 to 10,000 Da.展开更多
The effectiveness of a magnetic ion exchange resin (MIEX) for the treatment of Hongze Lake water in China was evaluated, The kinetics of natural organic matter (NOM) removal at various MIEX doses and contact time,...The effectiveness of a magnetic ion exchange resin (MIEX) for the treatment of Hongze Lake water in China was evaluated, The kinetics of natural organic matter (NOM) removal at various MIEX doses and contact time, multiple-loading experiments, impacts of MIEX prior to coagulation on coagulant demands and the effectiveness of combination of MIEX, pre-chlorination and coagulation were investigated. Kinetic experimental results show that more than 80% UV254 and 67% dissolved organic carbon (DOC) from raw water can be removed by the use of MIEX alone. 94% sulfate, 69% nitrate and 98% bromide removals are obtained after the first use of MIEX in multiple-loading experiments. It is suggested that MIEX can be loaded up to 1 250 bed volume (BV, volume ratio of tested water to resin) or more without saturation when regarding organics removal as a target. MIEX can remove organics to a greater extend than coagulation and lower the coagulant demand when combining with coagulation. Chlorination experimental results show that MIEX can remove 57% chlorine demand and 77% trihalomethane formation potential (THMFP) for raw water. Pre-chlorination followed by MIEX and coagulation can give additional organic and THMFP removals. The results suggest that MIEX provides a new method to solve thc problem algae reproduction.展开更多
Liquid phase synthesis of one of the important fuel oxygenate, ethyl tert-butyl ether (ETBE), from etha-nol and tert-butyl alcohol (TBA) has been studied in catalytic distillation column (CDC) using ion exchange...Liquid phase synthesis of one of the important fuel oxygenate, ethyl tert-butyl ether (ETBE), from etha-nol and tert-butyl alcohol (TBA) has been studied in catalytic distillation column (CDC) using ion exchange resin catalyst CT-145H. A packed CDC of 1.2 m height and 50 mm diameter with indigenously developed reactive sec-tion packing was used to generate experimental data. Effect of different key variables on product purity in distillate, was investigated to find the optimum operating conditions for ETBE synthesis. The optimum conditions for 0.2 kg·s-1 of ethanol feed were found:reboiler duty of 375 W, molar feed ratio of 1︰1.3 of reactants, and reflux ratio of 7. Concentration profiles for each component along each column section at optimum conditions were also drawn. Neither output nor input multiplicity was observed at experimental conditions.展开更多
Magnetic ion exchange(MIEX) resins have received considerable attention in drinking water treatment due to their fast and efficient removal of dissolved organic carbon(DOC). Two types of mechanisms, i.e., ion exchange...Magnetic ion exchange(MIEX) resins have received considerable attention in drinking water treatment due to their fast and efficient removal of dissolved organic carbon(DOC). Two types of mechanisms, i.e., ion exchange,reversible and irreversible adsorption, may occur during pollutants removal by MIEX. This work examined the removal mechanism of 17α-Ethinylestradiol(EE2) by MIEX. As one of typical estrogen micro-pollutants,EE2 existed as neutral molecule in natural water, and its charge density was close to zero [(0.00000219 ±0.00000015) meq·(μg EE2)^(-1)] based on the potentiometric titration method. However, the removal of EE2 by MIEX was much higher than that of other micro-pollutants previously reported. Multi-cycle adsorptionregeneration experiments and ion exchange stoichiometry analysis were conducted to elucidate the removal mechanism of EE2 by MIEX resin. The results suggested that the main removal mechanism of EE2 by MIEX was ion exchange instead of reversible micro-pore adsorption. The experimental analysis based on Donnan theory indicated that the internal micro-environment of resin beads was alkaline, in the alkaline environment EE2 would be ionized into negatively charged groups. As a result, ion exchange reaction occurred inside the pore of MIEX resin, and the removal process of EE2 by MIEX was dominated by the ion exchange reaction.展开更多
The authors discovered a new way to clean the ion exchange resin sorption of uranium from silicic acid used solution "Ayanat". The method reduces the costs of regeneration of ion exchange resin and its reuse in the ...The authors discovered a new way to clean the ion exchange resin sorption of uranium from silicic acid used solution "Ayanat". The method reduces the costs of regeneration of ion exchange resin and its reuse in the sorption of uranium.展开更多
The study of copper adsorption onto ion exchange resins of anionic type is part of the gold recovery from ammonia-thiosulfate solutions, where copper is the main impurity of the system because it acts as a catalyst of...The study of copper adsorption onto ion exchange resins of anionic type is part of the gold recovery from ammonia-thiosulfate solutions, where copper is the main impurity of the system because it acts as a catalyst of gold dissolution reaction. A study is made of the adsorption and desorption of copper in the form of the complex in an ammonia-thiosulfate media on an ion exchange resin, DOWEX 550A, classified as a strong base, which in its inner structure has a quaternary amine functional group. In the studied pH range copper adsorption increased with increasing pH, while the presence of thiosulfate decreased it, the same as the ammonia content, due to the greater presence of cuprotetramine, . Elution of the copper complexes from the resin was more efficient with sulfite than with perchlorate.展开更多
Before proposing an innovative process for the coproduction of ethyl and butyl acetates, the individual syntheses of ethyl acetate and butyl acetate by two different routes were first studied. These syntheses involved...Before proposing an innovative process for the coproduction of ethyl and butyl acetates, the individual syntheses of ethyl acetate and butyl acetate by two different routes were first studied. These syntheses involved the reaction of ethanol or n-butanol with acetic acid or acetic anhydride in the presence of ion exchange resins: Amberlyst 15, Amberlyst 16, Amberlyst 36 and Dowex 50WX8. Kinetic and thermodynamic studies were performed with all resins. The lowest activation energy (Ea) value was obtained with Dowex 50WX8, which was identified as the best-performing resin, able to be reused at least in four runs without regeneration. The presence of water-azeotropes during the synthesis of ethyl acetate makes its purification difficult. A new strategy was adopted here, involving the use of ethanol and acetic anhydride as the starting material. In order to minimize acetic acid as co-product of this reaction, a novel two-step process for the coproduction of ethyl and butyl acetates was developed. The first step involves the production of ethyl acetate and its purification. Butyl acetate was produced in the second step: n-butanol was added to the mixture of acetic acid and the resin remaining after the first-step distillation. This process yields ethyl acetate and butyl acetate at high purity and shows an environmental benefit over the independent syntheses by green metrics calculation and life cycle assessment.展开更多
AIM: To prepare high-purity ginseng total saponins from a water decoction of Chinese ginseng root.METHOD: Total saponins were efficiently purified by dynamic anion-cation exchange following the removal of hydrophili...AIM: To prepare high-purity ginseng total saponins from a water decoction of Chinese ginseng root.METHOD: Total saponins were efficiently purified by dynamic anion-cation exchange following the removal of hydrophilic impurities by macroporous resin D101. For quality control, ultrahigh-performance liquid chromatography with a charged aerosol detector (CAD) was applied to quantify marker components. The total saponin content was estimated by a colorimetric method using a vanillin-vitriol system and CAD response. RESULTS: D201, which consisted of a cross-linked polystyrene matrix and -]N+(CI-13)3 functional groups, was the best of the four anion exchange resins tested. However, no significant difference in cation exchange ability was observed between D001 (strong acid) and D 113 (weak acid), although they have different functional groups and matrices. After purification in combination with D101, D201, and D 113, the estimated contents of total saponins were 107% and 90% according to the colorimetric method and CAD response, respectively. The total amount of representative ginsenosides Re, Rd, Rgl, and compound K was approximately 22% based on ultrahigh-performance liquid chromatography-CAD quantitative analysis. CONCLUSION: These findings suggest that an ion exchange resin, combined with macroporous adsorption resin separation, is a promising and feasible purification procedure for neutral natural polar components.展开更多
A high-surface-area carbon (KC-1) was prepared from waste polystyrene-based ion exchange resin by KOH activation and used for naphthalene adsorption. The carbon exhibited a good hydrophobic nature with developed por...A high-surface-area carbon (KC-1) was prepared from waste polystyrene-based ion exchange resin by KOH activation and used for naphthalene adsorption. The carbon exhibited a good hydrophobic nature with developed porous structure, favoring the adsorption of organic compounds. The Brunauer-Emmett-Teller surface area and total pore volume of KC- 1 were 3442.2 and 1.68 cm3/g, respectively, which can be compared with those of KOH-activated carbons prepared from other precursors. Batch experiments were carded out to investigate the adsorption of naphthalene onto KC-1. The equilibrium data were analyzed by the Langmuir, Freundlich, and Polanyi- Manes isotherms and agreed with the Polanyi-Manes Model. The adsorption of naphthalene depended greatly on the porosity of the carbon, and the dispersive interactions between naphthalene and carbon could be relatively weak. The pH variation in aqueous solution had little effect on the adsorption process. The equilibrium time for 0.04 g/L of carbon dose was around 5 hr. Different models were used to evaluate the kinetic data and the pseudo second-order model was suitable to describe the kinetic process of naphthalene adsorption onto KC-1. Regeneration of spent carbon could be carded out effectively by alcohol treatment. The results indicated that KC-1 was a promising adsorbent for the removal of polycyclic aromatic hydrocarbons from aqueous solutions.展开更多
Ion exchange resins (IERs) have been widely used in nuclear facilities. However, the spent radioactive IERs result in major quantities of low and intermediate level radioactive wastes. This article describes a labora...Ion exchange resins (IERs) have been widely used in nuclear facilities. However, the spent radioactive IERs result in major quantities of low and intermediate level radioactive wastes. This article describes a laboratory experimental study on solidification processing of IERs using a new type of cement named ASC cement. The strength of the cementation matrix is in the range of 1820 MPa (28 d); the loading of the spent IER in the cement-resin matrix is over 45% and leaching rates of 137Cs, 90Sr and 60Co are 7.92×10 -5, 5.7×10 -6, and 1.19×10 -8 cm/d. The results show that ASC cement can be a preferable cementation material for immobilization of radioactive spent IER.展开更多
The esterification reactions of lactic acid with isobutanol and n-butanol have been studied in the presence of acid ion-exchange resin Weblyst D009. The influences of catalyst loading, stirrer speed, catalyst particle...The esterification reactions of lactic acid with isobutanol and n-butanol have been studied in the presence of acid ion-exchange resin Weblyst D009. The influences of catalyst loading, stirrer speed, catalyst particle size, initial reactant molar ratio and temperature on the reaction rate have been examined. Experimental kinetic data were correlated by using the pseudo-homogeneous, Langnluir-Hinshelwood and Eley-Rideal models. Nonideality of the liquid phase was taken into account by using activities instead of molar fractions. The activity coefficients were calculated according to the group contribution method UNIFAC. Provided that the nonideality of the liquid is taken into account, the esterification kinetics of lactic acid with isobutanol and n-butanol catalyzed by the acid ion-exchange resin can be described using all threemodels with reasonable errors.展开更多
The aim of the study was to taste mask ciprofloxacin(CP)by using ion-exchange resins(IERs)followed by sustain release of CP by forming interpenetrating polymer network(IPN).IERs based on the copolymerization of acryli...The aim of the study was to taste mask ciprofloxacin(CP)by using ion-exchange resins(IERs)followed by sustain release of CP by forming interpenetrating polymer network(IPN).IERs based on the copolymerization of acrylic acid with different cross linking agents were synthesised.Drug-resin complexes(DRCs)with three different ratios of drug to IERs(1:1,1:2,1:4)were prepared&evaluated for taste masking by following in vivo and in vitro methods.Human volunteers graded ADC 1:4,acrylic acid-divinyl benzene(ADC-3)resin as tasteless.Characterization studies such as FTIR,SEM,DSC,P-XRD differentiated ADC 1:4,from physical mixture(PM 1:4)and confirmed the formation of complex.In vitro drug release of ADC 1:4 showed complete release of CP within 60 min at simulated gastric fluid(SGF)i.e.pH 1.2.IPN beads were prepared with ADC 1:4 by using sodium alginate(AL)and sodium alginate-chitosan(AL-CS)for sustain release of CP at SGF pH and followed by simulated intestinal fluid(SIF i.e.pH 7.4).FTIR spectra confirmed the formation of IPN beads.The release of CP was sustain at SGF pH(<20%)whereas in SIF media it was more(>75%).The kinetic model of IPN beads showed the release of CP was non-Fickian diffusion type.展开更多
Macroreticular ion exchange resin catalysts were prepared by suspension polymerization, and then modified by alkylmercaptoamines. The modified catalysts were characterized by N2 adsorption/desorption measure- ments, s...Macroreticular ion exchange resin catalysts were prepared by suspension polymerization, and then modified by alkylmercaptoamines. The modified catalysts were characterized by N2 adsorption/desorption measure- ments, scanning electron microscopy and differential scanning calorimetry. Key factors such as the mercaptan content, the degree of crosslinking and the structures of the promoters were investigated for the synthesis of Bisphenol A (BPA). At optimal conditions, the macroreticular ion exchange resin catalysts modified by alkylmercaptoamines showed high catalytic activity and selectivity for BPA synthesis.展开更多
A Zn Cl2-modified ion exchange resin as the catalyst for bisphenol-A synthesis was prepared by the ion exchange method. Scanning electron microscope(SEM), Fourier transform infrared spectrophotometer(FT-IR), therm...A Zn Cl2-modified ion exchange resin as the catalyst for bisphenol-A synthesis was prepared by the ion exchange method. Scanning electron microscope(SEM), Fourier transform infrared spectrophotometer(FT-IR), thermo gravimetric analyzer(TGA) and pyridine adsorbed IR were employed to characterize the catalyst. As a result, the modified catalyst showed high acidity and good thermal stability. Zn2+coordinated with a sulfonic acid group to form a stable active site, which effectively decreased the deactivation caused by the degradation of sulfonic acid. Thus the prepared catalyst exhibited excellent catalytic activity, selectivity and stability compared to the unmodified counterpart.展开更多
In this paper the self-regeneration process of the mixed resins consisting of cationand anion ion exchangers in the electrolialyser of the packed bed is analyzed and anelectric regeneration method is put forward to su...In this paper the self-regeneration process of the mixed resins consisting of cationand anion ion exchangers in the electrolialyser of the packed bed is analyzed and anelectric regeneration method is put forward to supply the desalinated water by mixedbed The electric regeneration technology is a new one used for regeneration of theexhausted ion exchangers in the mixed bed instead of the traditional regeneratingprocess by using acid and abc liquor Electric energy is consumed to regenerat theion exchangers loaded by salts from water treatment without any chemicals- acid alkali. The advantage of the electric regeneration process edibited convenientoperation, no discharge any waste, and therefore no Polluted to the recehang waterbode and the environmental ground展开更多
Producing 2-ethyl-1-hexyl thioglycolate(ETE)via esterification reaction with thioglycolic acid(TGA)aqueous solution as raw material by reactive-separation coupling technology is a promising process intensification met...Producing 2-ethyl-1-hexyl thioglycolate(ETE)via esterification reaction with thioglycolic acid(TGA)aqueous solution as raw material by reactive-separation coupling technology is a promising process intensification method.To choose suitable reactive-separation coupling strategy,the kinetic studies of the esterification of TGA with 2-ethyl-1-hexanol(EHL)were carried out in a batch system.The commercial ion exchange resin was employed as an eco-friendly catalyst.The effects of temperature,catalyst concentration and molar ratio were determined.It was interesting to observe that the equilibrium conversion of TGA increased with the increase of catalyst mass fraction due to the adsorption of product water onto resin surface.The activity-based pseudo-homogeneous(PH),Eley-Rideal(ER)and Langmuir-Hinshelwood-Ho ugen-Watson(LHHW)models were used to fit the kinetics data of the resin-catalyzed reaction.The models of ER and LHHW performed better than the PH model.The kinetics of the TGA-self-catalyzed reaction was also determined.An activity-based homogeneous kinetics model could well describe this self-catalyzed reaction.These results would be meaningful to the selection and design of an appropriate reactionseparation strategy for the production of ETE,to realize the process intensification.展开更多
A new configuration integrated ion exchange effect with both electro-migration and electrochemical reaction in a single cell was developed to effectively retrieve metal ions from simulated wastewater using ion exchang...A new configuration integrated ion exchange effect with both electro-migration and electrochemical reaction in a single cell was developed to effectively retrieve metal ions from simulated wastewater using ion exchange resins without additive chemicals. By simply assembling cation exchange resins and anion exchange resins separated by homogeneous membranes, we found that the system will always be acidic in the concentrate compartment so that ion exchange resins could be in-situ regenerated without hydroxide precipitation. Such a realizable design will be really suitable for wastewater purification.展开更多
Blockage in the storage and transportation of waste resin is a difficult problem in the radioactive waste treatment process of nuclear power plants.In this study,in order to solve the problems of unstable resin transp...Blockage in the storage and transportation of waste resin is a difficult problem in the radioactive waste treatment process of nuclear power plants.In this study,in order to solve the problems of unstable resin transport concentration and easy blockage of conveying equipment and pipelines in nuclear power plants in China,a set of non⁃stirring conveying devices is developed,and theoretical calculations,simulation analysis and experimental verification are carried out.By transporting resin using the no stirring conveying device developed in this paper,it is not only to eliminate the risk of blockage and ensure the safety of transportation,but also to adjust the concentration of conveying resin to change the transport efficiency according to the operating conditions.The effective bearing rate of waste resin storage tank can be improved,so that the comprehensive performance of waste resin storage and transportation in nuclear power plants can be greatly improved.展开更多
文摘Aim To prepare the prolonged-released microspheres of mefformin hydrochloride. Methods Ion-exchange resin-drug mefformin hydrochloride complexes were prepared as core materials, and followed by coating using ethylcellulose (EC) by the emulsion solvent diffusion technique. The release rate of mefformin from the microcapsules was highly dependent on the encapsulating formulation, thus being used as an index for formulation screening. Orthogonal experiments were performed to optimize the coating formulation. Results The final chosen formulation for coating of mefformin microcapsules were as follows: ( 1 ) the ratio of EC (20cps) to EC (45cps) was 50:50; (2) the ratio of plasticizer to coating materials was 20% ;and (3) the ratio of resin-mefformin complexes to coating materials was 5 : 1. Conclusion The prolonged release microspheres of mefformin hydrochloride were successfully prepared.
基金Projects(21376251,21406233) supported by the National Natural Science Foundation of China
文摘The adsorption behavior of ion exchange resin D301 in the extraction of hexavalent molybdenum from high acidic leach solution was investigated. SEM, EDS and Raman spectra analyses were applied to studying the adsorption capacity, reaction kinetics and possible adsorption mechanism in detail. Results showed that the adsorption capacity of D301 resin for molybdenum from high acidic leach solution was up to 463.63 mg/g. Results of the kinetic analysis indicated that the adsorption process was controlled by the particle diffusion with the activation energy 25.47 k J/mol(0.9-1.2 mm) and 20.38 k J/mol(0.6-0.9 mm). Furthermore, the molybdenum loaded on the resin could be eluted by using 2 mol/L ammonia hydroxide solution. Besides, dynamic continuous column experiments verified direct extraction of molybdenum from acidic leach solutions by ion exchange resin D301 and the upstream flow improved dynamic continuous absorption.
基金support provided by the National Nature Science Fund(No.50778088)China National Funds for Distinguished Young Scientists(No.50825802)Resources Special Subject of National High Technology Research & Development Project(863 project,No.2006AA06Z383),China.
文摘In this paper, humic acid (HA) was ultra-filtered into different molecular weight sections and was characterized by multielement analysis, UV254/TOC, FT-IR and three-dimensional fluorescence spectrometric. Since humic acids of different molecular weights have different hydrophilic and molecular size, the maximum adsorption capacity of basic ion exchange resins appears on the humic acid whose molecular weight ranges from 6000 to 10,000 Da.
基金Project(2008ZX07421-002) supported by the Key National Science and Technology Project of ChinaProject(50638020) supported by the National Natural Science Foundation of China
文摘The effectiveness of a magnetic ion exchange resin (MIEX) for the treatment of Hongze Lake water in China was evaluated, The kinetics of natural organic matter (NOM) removal at various MIEX doses and contact time, multiple-loading experiments, impacts of MIEX prior to coagulation on coagulant demands and the effectiveness of combination of MIEX, pre-chlorination and coagulation were investigated. Kinetic experimental results show that more than 80% UV254 and 67% dissolved organic carbon (DOC) from raw water can be removed by the use of MIEX alone. 94% sulfate, 69% nitrate and 98% bromide removals are obtained after the first use of MIEX in multiple-loading experiments. It is suggested that MIEX can be loaded up to 1 250 bed volume (BV, volume ratio of tested water to resin) or more without saturation when regarding organics removal as a target. MIEX can remove organics to a greater extend than coagulation and lower the coagulant demand when combining with coagulation. Chlorination experimental results show that MIEX can remove 57% chlorine demand and 77% trihalomethane formation potential (THMFP) for raw water. Pre-chlorination followed by MIEX and coagulation can give additional organic and THMFP removals. The results suggest that MIEX provides a new method to solve thc problem algae reproduction.
基金Part of this paper was included in the proceedings of World Congress on Engineering and Computer Science,San Francisco,USA,22-24 October,2008,pp.79-84(ISBN 978-988-98671-0-2)The first author is grateful to Higher Education Commission of Pakistan for funding this research under indigenous scheme
文摘Liquid phase synthesis of one of the important fuel oxygenate, ethyl tert-butyl ether (ETBE), from etha-nol and tert-butyl alcohol (TBA) has been studied in catalytic distillation column (CDC) using ion exchange resin catalyst CT-145H. A packed CDC of 1.2 m height and 50 mm diameter with indigenously developed reactive sec-tion packing was used to generate experimental data. Effect of different key variables on product purity in distillate, was investigated to find the optimum operating conditions for ETBE synthesis. The optimum conditions for 0.2 kg·s-1 of ethanol feed were found:reboiler duty of 375 W, molar feed ratio of 1︰1.3 of reactants, and reflux ratio of 7. Concentration profiles for each component along each column section at optimum conditions were also drawn. Neither output nor input multiplicity was observed at experimental conditions.
基金Supported by the National Natural Science Foundation of China(51678408,51478314,51638011)the National Key Research and Development Program of China(2016YFC0400506)+1 种基金the Natural Science Foundation of Tianjin(14JCQNJC09000)the Research Fund of Tianjin Key Laboratory of Aquatic Science and Technology(TJKLASTZD-2016-06)
文摘Magnetic ion exchange(MIEX) resins have received considerable attention in drinking water treatment due to their fast and efficient removal of dissolved organic carbon(DOC). Two types of mechanisms, i.e., ion exchange,reversible and irreversible adsorption, may occur during pollutants removal by MIEX. This work examined the removal mechanism of 17α-Ethinylestradiol(EE2) by MIEX. As one of typical estrogen micro-pollutants,EE2 existed as neutral molecule in natural water, and its charge density was close to zero [(0.00000219 ±0.00000015) meq·(μg EE2)^(-1)] based on the potentiometric titration method. However, the removal of EE2 by MIEX was much higher than that of other micro-pollutants previously reported. Multi-cycle adsorptionregeneration experiments and ion exchange stoichiometry analysis were conducted to elucidate the removal mechanism of EE2 by MIEX resin. The results suggested that the main removal mechanism of EE2 by MIEX was ion exchange instead of reversible micro-pore adsorption. The experimental analysis based on Donnan theory indicated that the internal micro-environment of resin beads was alkaline, in the alkaline environment EE2 would be ionized into negatively charged groups. As a result, ion exchange reaction occurred inside the pore of MIEX resin, and the removal process of EE2 by MIEX was dominated by the ion exchange reaction.
文摘The authors discovered a new way to clean the ion exchange resin sorption of uranium from silicic acid used solution "Ayanat". The method reduces the costs of regeneration of ion exchange resin and its reuse in the sorption of uranium.
文摘The study of copper adsorption onto ion exchange resins of anionic type is part of the gold recovery from ammonia-thiosulfate solutions, where copper is the main impurity of the system because it acts as a catalyst of gold dissolution reaction. A study is made of the adsorption and desorption of copper in the form of the complex in an ammonia-thiosulfate media on an ion exchange resin, DOWEX 550A, classified as a strong base, which in its inner structure has a quaternary amine functional group. In the studied pH range copper adsorption increased with increasing pH, while the presence of thiosulfate decreased it, the same as the ammonia content, due to the greater presence of cuprotetramine, . Elution of the copper complexes from the resin was more efficient with sulfite than with perchlorate.
基金supported by the European Union’s Seventh Framework Program for research,technological development and demonstration(FP7/2007-2013)[Grant Agreement No.605215]CONACyT for providing funding through PhD scholarship no.383910.
文摘Before proposing an innovative process for the coproduction of ethyl and butyl acetates, the individual syntheses of ethyl acetate and butyl acetate by two different routes were first studied. These syntheses involved the reaction of ethanol or n-butanol with acetic acid or acetic anhydride in the presence of ion exchange resins: Amberlyst 15, Amberlyst 16, Amberlyst 36 and Dowex 50WX8. Kinetic and thermodynamic studies were performed with all resins. The lowest activation energy (Ea) value was obtained with Dowex 50WX8, which was identified as the best-performing resin, able to be reused at least in four runs without regeneration. The presence of water-azeotropes during the synthesis of ethyl acetate makes its purification difficult. A new strategy was adopted here, involving the use of ethanol and acetic anhydride as the starting material. In order to minimize acetic acid as co-product of this reaction, a novel two-step process for the coproduction of ethyl and butyl acetates was developed. The first step involves the production of ethyl acetate and its purification. Butyl acetate was produced in the second step: n-butanol was added to the mixture of acetic acid and the resin remaining after the first-step distillation. This process yields ethyl acetate and butyl acetate at high purity and shows an environmental benefit over the independent syntheses by green metrics calculation and life cycle assessment.
基金supported by the Jiangsu Provincial Natural Science Foundation of China(No.BK2011815)Specialized Research Fund for the Doctoral Program of Higher Education(No.20103237120011)the"Qing Lan"Project from Jiangsu Provincial Framework Teacher Support Scheme
文摘AIM: To prepare high-purity ginseng total saponins from a water decoction of Chinese ginseng root.METHOD: Total saponins were efficiently purified by dynamic anion-cation exchange following the removal of hydrophilic impurities by macroporous resin D101. For quality control, ultrahigh-performance liquid chromatography with a charged aerosol detector (CAD) was applied to quantify marker components. The total saponin content was estimated by a colorimetric method using a vanillin-vitriol system and CAD response. RESULTS: D201, which consisted of a cross-linked polystyrene matrix and -]N+(CI-13)3 functional groups, was the best of the four anion exchange resins tested. However, no significant difference in cation exchange ability was observed between D001 (strong acid) and D 113 (weak acid), although they have different functional groups and matrices. After purification in combination with D101, D201, and D 113, the estimated contents of total saponins were 107% and 90% according to the colorimetric method and CAD response, respectively. The total amount of representative ginsenosides Re, Rd, Rgl, and compound K was approximately 22% based on ultrahigh-performance liquid chromatography-CAD quantitative analysis. CONCLUSION: These findings suggest that an ion exchange resin, combined with macroporous adsorption resin separation, is a promising and feasible purification procedure for neutral natural polar components.
基金supported by the Program for Changjiang Scholars Innovative Research Team in Universitythe National Natural Science Foundation of China (No.51178215)
文摘A high-surface-area carbon (KC-1) was prepared from waste polystyrene-based ion exchange resin by KOH activation and used for naphthalene adsorption. The carbon exhibited a good hydrophobic nature with developed porous structure, favoring the adsorption of organic compounds. The Brunauer-Emmett-Teller surface area and total pore volume of KC- 1 were 3442.2 and 1.68 cm3/g, respectively, which can be compared with those of KOH-activated carbons prepared from other precursors. Batch experiments were carded out to investigate the adsorption of naphthalene onto KC-1. The equilibrium data were analyzed by the Langmuir, Freundlich, and Polanyi- Manes isotherms and agreed with the Polanyi-Manes Model. The adsorption of naphthalene depended greatly on the porosity of the carbon, and the dispersive interactions between naphthalene and carbon could be relatively weak. The pH variation in aqueous solution had little effect on the adsorption process. The equilibrium time for 0.04 g/L of carbon dose was around 5 hr. Different models were used to evaluate the kinetic data and the pseudo second-order model was suitable to describe the kinetic process of naphthalene adsorption onto KC-1. Regeneration of spent carbon could be carded out effectively by alcohol treatment. The results indicated that KC-1 was a promising adsorbent for the removal of polycyclic aromatic hydrocarbons from aqueous solutions.
文摘Ion exchange resins (IERs) have been widely used in nuclear facilities. However, the spent radioactive IERs result in major quantities of low and intermediate level radioactive wastes. This article describes a laboratory experimental study on solidification processing of IERs using a new type of cement named ASC cement. The strength of the cementation matrix is in the range of 1820 MPa (28 d); the loading of the spent IER in the cement-resin matrix is over 45% and leaching rates of 137Cs, 90Sr and 60Co are 7.92×10 -5, 5.7×10 -6, and 1.19×10 -8 cm/d. The results show that ASC cement can be a preferable cementation material for immobilization of radioactive spent IER.
基金Supported by the National Basic Research Program of China (2007CB714300)
文摘The esterification reactions of lactic acid with isobutanol and n-butanol have been studied in the presence of acid ion-exchange resin Weblyst D009. The influences of catalyst loading, stirrer speed, catalyst particle size, initial reactant molar ratio and temperature on the reaction rate have been examined. Experimental kinetic data were correlated by using the pseudo-homogeneous, Langnluir-Hinshelwood and Eley-Rideal models. Nonideality of the liquid phase was taken into account by using activities instead of molar fractions. The activity coefficients were calculated according to the group contribution method UNIFAC. Provided that the nonideality of the liquid is taken into account, the esterification kinetics of lactic acid with isobutanol and n-butanol catalyzed by the acid ion-exchange resin can be described using all threemodels with reasonable errors.
文摘The aim of the study was to taste mask ciprofloxacin(CP)by using ion-exchange resins(IERs)followed by sustain release of CP by forming interpenetrating polymer network(IPN).IERs based on the copolymerization of acrylic acid with different cross linking agents were synthesised.Drug-resin complexes(DRCs)with three different ratios of drug to IERs(1:1,1:2,1:4)were prepared&evaluated for taste masking by following in vivo and in vitro methods.Human volunteers graded ADC 1:4,acrylic acid-divinyl benzene(ADC-3)resin as tasteless.Characterization studies such as FTIR,SEM,DSC,P-XRD differentiated ADC 1:4,from physical mixture(PM 1:4)and confirmed the formation of complex.In vitro drug release of ADC 1:4 showed complete release of CP within 60 min at simulated gastric fluid(SGF)i.e.pH 1.2.IPN beads were prepared with ADC 1:4 by using sodium alginate(AL)and sodium alginate-chitosan(AL-CS)for sustain release of CP at SGF pH and followed by simulated intestinal fluid(SIF i.e.pH 7.4).FTIR spectra confirmed the formation of IPN beads.The release of CP was sustain at SGF pH(<20%)whereas in SIF media it was more(>75%).The kinetic model of IPN beads showed the release of CP was non-Fickian diffusion type.
文摘Macroreticular ion exchange resin catalysts were prepared by suspension polymerization, and then modified by alkylmercaptoamines. The modified catalysts were characterized by N2 adsorption/desorption measure- ments, scanning electron microscopy and differential scanning calorimetry. Key factors such as the mercaptan content, the degree of crosslinking and the structures of the promoters were investigated for the synthesis of Bisphenol A (BPA). At optimal conditions, the macroreticular ion exchange resin catalysts modified by alkylmercaptoamines showed high catalytic activity and selectivity for BPA synthesis.
文摘A Zn Cl2-modified ion exchange resin as the catalyst for bisphenol-A synthesis was prepared by the ion exchange method. Scanning electron microscope(SEM), Fourier transform infrared spectrophotometer(FT-IR), thermo gravimetric analyzer(TGA) and pyridine adsorbed IR were employed to characterize the catalyst. As a result, the modified catalyst showed high acidity and good thermal stability. Zn2+coordinated with a sulfonic acid group to form a stable active site, which effectively decreased the deactivation caused by the degradation of sulfonic acid. Thus the prepared catalyst exhibited excellent catalytic activity, selectivity and stability compared to the unmodified counterpart.
文摘In this paper the self-regeneration process of the mixed resins consisting of cationand anion ion exchangers in the electrolialyser of the packed bed is analyzed and anelectric regeneration method is put forward to supply the desalinated water by mixedbed The electric regeneration technology is a new one used for regeneration of theexhausted ion exchangers in the mixed bed instead of the traditional regeneratingprocess by using acid and abc liquor Electric energy is consumed to regenerat theion exchangers loaded by salts from water treatment without any chemicals- acid alkali. The advantage of the electric regeneration process edibited convenientoperation, no discharge any waste, and therefore no Polluted to the recehang waterbode and the environmental ground
基金the financial support for this work from the National Natural Science Foundation of China(No.21706034)the Guiding Project of Fujian Province(No.2018H0016)+1 种基金the Open Foundation of State Key Laboratory of Chemical Engineering(No.SKL-ChE-18B02)the Integration of Industry,Education and Research of Fujian Province(No.2018Y4008).
文摘Producing 2-ethyl-1-hexyl thioglycolate(ETE)via esterification reaction with thioglycolic acid(TGA)aqueous solution as raw material by reactive-separation coupling technology is a promising process intensification method.To choose suitable reactive-separation coupling strategy,the kinetic studies of the esterification of TGA with 2-ethyl-1-hexanol(EHL)were carried out in a batch system.The commercial ion exchange resin was employed as an eco-friendly catalyst.The effects of temperature,catalyst concentration and molar ratio were determined.It was interesting to observe that the equilibrium conversion of TGA increased with the increase of catalyst mass fraction due to the adsorption of product water onto resin surface.The activity-based pseudo-homogeneous(PH),Eley-Rideal(ER)and Langmuir-Hinshelwood-Ho ugen-Watson(LHHW)models were used to fit the kinetics data of the resin-catalyzed reaction.The models of ER and LHHW performed better than the PH model.The kinetics of the TGA-self-catalyzed reaction was also determined.An activity-based homogeneous kinetics model could well describe this self-catalyzed reaction.These results would be meaningful to the selection and design of an appropriate reactionseparation strategy for the production of ETE,to realize the process intensification.
基金Project supported by the Scientific Research Foundation for theReturned Overseas Chinese Scholars, State Education Ministry andZhejiang Provincial National Science Foundation of China
文摘A new configuration integrated ion exchange effect with both electro-migration and electrochemical reaction in a single cell was developed to effectively retrieve metal ions from simulated wastewater using ion exchange resins without additive chemicals. By simply assembling cation exchange resins and anion exchange resins separated by homogeneous membranes, we found that the system will always be acidic in the concentrate compartment so that ion exchange resins could be in-situ regenerated without hydroxide precipitation. Such a realizable design will be really suitable for wastewater purification.
基金Sponsored by the Independent Scientific Research Fund of China Nuclear Power Engineering Co.,Ltd(Grant No.KY1744).
文摘Blockage in the storage and transportation of waste resin is a difficult problem in the radioactive waste treatment process of nuclear power plants.In this study,in order to solve the problems of unstable resin transport concentration and easy blockage of conveying equipment and pipelines in nuclear power plants in China,a set of non⁃stirring conveying devices is developed,and theoretical calculations,simulation analysis and experimental verification are carried out.By transporting resin using the no stirring conveying device developed in this paper,it is not only to eliminate the risk of blockage and ensure the safety of transportation,but also to adjust the concentration of conveying resin to change the transport efficiency according to the operating conditions.The effective bearing rate of waste resin storage tank can be improved,so that the comprehensive performance of waste resin storage and transportation in nuclear power plants can be greatly improved.