The hydrogen distribution curve along cross-section of high pressure hydrogen charged spec- imens of 21Cr-7Ni-9Mn-N austenitic steel was obtained quantitatively by IMMA(Ion Microprobe Mass Analyzer).Thus the hydrogen ...The hydrogen distribution curve along cross-section of high pressure hydrogen charged spec- imens of 21Cr-7Ni-9Mn-N austenitic steel was obtained quantitatively by IMMA(Ion Microprobe Mass Analyzer).Thus the hydrogen solubility and diffusivity may be measured, and the hydrogen permeability and other parameters may be calculated indirectly.The hydrogen distribution in specimens either long-term aged in air or in electron beam weld seam after high pressure hydrogen charging was also examined.展开更多
The distribution of hydrogen near the notch tip of the austenitic steel 21Cr9Ni9MnN under mode Ⅰ loading has been studid with ion microprobe mass analyzer.Two peaks of hydrogen accumulation,one at notch tip and other...The distribution of hydrogen near the notch tip of the austenitic steel 21Cr9Ni9MnN under mode Ⅰ loading has been studid with ion microprobe mass analyzer.Two peaks of hydrogen accumulation,one at notch tip and other far apart from it,were found.The distribution of hydrostatic stress and plastic strain in front of the notch tip under planar stress condition were calculated using ADINA non-linear finite element method.The calculated result in compari- son with data measured showed that the hydrogen concentration peak at the notch tip is caused by trapping effect of dislocation on dissolved hydrogen,while the other from the hydrostatic stress.The influence of stress intensity factor on the distribution of hydrogen con- centration and the process of hydrogen accumulation near notch tip was also discussed.展开更多
The hydroxyl in phyllosilicate minerals is the most common occurrence of water in primitive meteorites. Direct hydrogen isotopic analysis of this water component using an ion microprobe has been made in some glassy or...The hydroxyl in phyllosilicate minerals is the most common occurrence of water in primitive meteorites. Direct hydrogen isotopic analysis of this water component using an ion microprobe has been made in some glassy or phyllosilicate spherules from the Al Rais (CR) and Orgueil (CI) chondrites. The spherules from Al Rais show large deuterium excesses (δD = +200 -+800‰) relative to terrestrial standards, whereas deuterium-enrichments in the spherules from Orgueil are much smaller (δD = +40 - +130‰). The phyllosilicate spherules are products of aqueous alteration of glassy precursors. In Al Rais the phyllosilicate spherules have relatively higher δD values than the glassy ones, indicating that water introduced during aqueous alteration was deuterium-enriched. The deuterium-enrichments in the phyllosilicate spherules from Orgueil could result from isotopic exchange under thermodynamic conditions within the solar nebula. The much larger δD excesses of the Al Rais spherules, however, cannot be attributed to the similar process; instead, an interstellar origin needs to be invoked.展开更多
Sensitive, high-resolution ion microprobe zircon U-Pb ages of Paleoproterozoic, high-grade, metasedimentary rocks from the south-western part of the Siberian Craton are reported. Early Precambrian, high-grade complexe...Sensitive, high-resolution ion microprobe zircon U-Pb ages of Paleoproterozoic, high-grade, metasedimentary rocks from the south-western part of the Siberian Craton are reported. Early Precambrian, high-grade complexes, including garnet-biotite, hypersthene-biotite, and cordierite- bearing gneisses compose the Irkut terrane of the Sharyzhalgay Uplift. Protoliths of studied gneisses correspond to terrigenous sediments, ranging from greywacke to shale. The paragneiss model Nd ages of 2.4-3.1 Ga indicate Archean-to-Paleoproterozoic source provinces. Zircons from gneisses show corerim textures in cathodoluminescence (CL) image. Round or irregular shaped cores indicate detrital origin. Structureless rims with low Th/U are metamorphic in origin. The three age groups of detrital cores are: 〉2.7, -2.3, and 1.95-2 Ga. The ages of metamorphic rims range from 1.86 to 1.85 Ga; therefore, the sediments were deposited between 1.95 and 1.86 Ga and derived from Archean and Paleoproterozoic source rocks. It should be noted that Paleoproterozoic metasedimentary rocks of the Irkut Block are not unique. High-grade metaterrigenous sediments, with model Nd ages ranging from 2.3 to 2.5 Ga, are widely distributed within the Aldan and Anabar Shields of the Siberian Craton. The same situation is observed in the North China Craton, where metasedimentary rocks contain detrital igneous zircon grains with ages ranging from 3 to 2.1 Ga (Wan et al., 2006). All of these sedimentary units were subjected to Late Paleoproterozoic metamorphism. In the Siberian Craton, the Paleoproterozoic sedimentary deposits are possibly marked passive margins of the Early Precambrian crustal blocks, and their high-grade metamorphism was related to the consolidation of the Siberian Craton.展开更多
文摘The hydrogen distribution curve along cross-section of high pressure hydrogen charged spec- imens of 21Cr-7Ni-9Mn-N austenitic steel was obtained quantitatively by IMMA(Ion Microprobe Mass Analyzer).Thus the hydrogen solubility and diffusivity may be measured, and the hydrogen permeability and other parameters may be calculated indirectly.The hydrogen distribution in specimens either long-term aged in air or in electron beam weld seam after high pressure hydrogen charging was also examined.
文摘The distribution of hydrogen near the notch tip of the austenitic steel 21Cr9Ni9MnN under mode Ⅰ loading has been studid with ion microprobe mass analyzer.Two peaks of hydrogen accumulation,one at notch tip and other far apart from it,were found.The distribution of hydrostatic stress and plastic strain in front of the notch tip under planar stress condition were calculated using ADINA non-linear finite element method.The calculated result in compari- son with data measured showed that the hydrogen concentration peak at the notch tip is caused by trapping effect of dislocation on dissolved hydrogen,while the other from the hydrostatic stress.The influence of stress intensity factor on the distribution of hydrogen con- centration and the process of hydrogen accumulation near notch tip was also discussed.
文摘The hydroxyl in phyllosilicate minerals is the most common occurrence of water in primitive meteorites. Direct hydrogen isotopic analysis of this water component using an ion microprobe has been made in some glassy or phyllosilicate spherules from the Al Rais (CR) and Orgueil (CI) chondrites. The spherules from Al Rais show large deuterium excesses (δD = +200 -+800‰) relative to terrestrial standards, whereas deuterium-enrichments in the spherules from Orgueil are much smaller (δD = +40 - +130‰). The phyllosilicate spherules are products of aqueous alteration of glassy precursors. In Al Rais the phyllosilicate spherules have relatively higher δD values than the glassy ones, indicating that water introduced during aqueous alteration was deuterium-enriched. The deuterium-enrichments in the phyllosilicate spherules from Orgueil could result from isotopic exchange under thermodynamic conditions within the solar nebula. The much larger δD excesses of the Al Rais spherules, however, cannot be attributed to the similar process; instead, an interstellar origin needs to be invoked.
基金supported by the Russian Foundation for Basic Research(grant No.06-05-64572 and 09-05-00382)
文摘Sensitive, high-resolution ion microprobe zircon U-Pb ages of Paleoproterozoic, high-grade, metasedimentary rocks from the south-western part of the Siberian Craton are reported. Early Precambrian, high-grade complexes, including garnet-biotite, hypersthene-biotite, and cordierite- bearing gneisses compose the Irkut terrane of the Sharyzhalgay Uplift. Protoliths of studied gneisses correspond to terrigenous sediments, ranging from greywacke to shale. The paragneiss model Nd ages of 2.4-3.1 Ga indicate Archean-to-Paleoproterozoic source provinces. Zircons from gneisses show corerim textures in cathodoluminescence (CL) image. Round or irregular shaped cores indicate detrital origin. Structureless rims with low Th/U are metamorphic in origin. The three age groups of detrital cores are: 〉2.7, -2.3, and 1.95-2 Ga. The ages of metamorphic rims range from 1.86 to 1.85 Ga; therefore, the sediments were deposited between 1.95 and 1.86 Ga and derived from Archean and Paleoproterozoic source rocks. It should be noted that Paleoproterozoic metasedimentary rocks of the Irkut Block are not unique. High-grade metaterrigenous sediments, with model Nd ages ranging from 2.3 to 2.5 Ga, are widely distributed within the Aldan and Anabar Shields of the Siberian Craton. The same situation is observed in the North China Craton, where metasedimentary rocks contain detrital igneous zircon grains with ages ranging from 3 to 2.1 Ga (Wan et al., 2006). All of these sedimentary units were subjected to Late Paleoproterozoic metamorphism. In the Siberian Craton, the Paleoproterozoic sedimentary deposits are possibly marked passive margins of the Early Precambrian crustal blocks, and their high-grade metamorphism was related to the consolidation of the Siberian Craton.