The complex composition of herbal metabolites necessitates the development of powerful analytical techniques aimed to identify the bioactive components.The seeds of Descurainia sophia(SDS)are utilized in China as a co...The complex composition of herbal metabolites necessitates the development of powerful analytical techniques aimed to identify the bioactive components.The seeds of Descurainia sophia(SDS)are utilized in China as a cough and asthma relieving agent.Herein,a dimension-enhanced integral approach,by combining ultra-high performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry(UHPLC/IMQTOF-MS)and intelligent peak annotation,was developed to rapidly characterize the multicomponents from SDS.Good chromatographic separation was achieved within 38 min on a UPLC CSH C18(2.1×100 mm,1.7μm)column which was eluted by 0.1%formic acid in water(water phase)and acetonitrile(organic phase).Collision-induced dissociation-MS^(2)data were acquired by the data-independent high-definition MS^(E)(HDMS^(E))in both the negative and positive electrospray ionization modes.A major components knockout strategy was applied to improve the characterization of those minor ingredients by enhancing the injection volume.Moreover,a self-built chemistry library was established,which could be matched by the UNIFI software enabling automatic peak annotation of the obtained HDMS^(E)data.As a result of applying the intelligent peak annotation workflows and further confirmation process,a total of 53 compounds were identified or tentatively characterized from the SDS,including 29 flavonoids,one uridine derivative,four glucosides,one lignin,one phenolic compound,and 17 others.Notably,four-dimensional information related to the structure(e.g.,retention time,collision cross section,MS^(1)and MS^(2)data)was obtained for each component by the developed integral approach,and the results would greatly benefit the quality control of SDS.展开更多
A combination of high-field asymmetric waveform ion mobility spectrometry (FAIMS) with mass spectrometer (MS) was analyzed. FAIMS separates ions from the volatile organic compounds in the gas-phase as an ion-filte...A combination of high-field asymmetric waveform ion mobility spectrometry (FAIMS) with mass spectrometer (MS) was analyzed. FAIMS separates ions from the volatile organic compounds in the gas-phase as an ion-filter for MS. The sample ions were created at ambient pressure by ion source, which was equipped with a 10.6 eV UV discharge lamp (A=116.5 nm). The drift tube of FAIMS is composed of two parallel planar electrodes and the dimension is 10 mm×8 mm×0.5 mm. FAIMS was investigated when driven by the high-filed rectangular asymmetric waveform with the peak-to-peak voltage of 1.36 kV at the frequency of 1 MHz and the duty cycle of 30%. The acetone, the butanone, and their mixture were adopted to characterize the FAIMS-MS. The mass spectra obtained from MS illustrate that there are ion-molecular reactions between the ions and the sample neutral molecular. And the proton transfer behavior in the mixture of the acetone and the butanone is also observed. With the compensation voltage tuned from -30 V to 10 V with a step size of 0.1 V, the ion pre-separation before MS is realized.展开更多
The dissociative electron attachment process for CHCl3 at different electric field have been studied with nitrogen as drift and carrier gas using corona discharge ionization source ion mobility spectrometry (CD-IMS)...The dissociative electron attachment process for CHCl3 at different electric field have been studied with nitrogen as drift and carrier gas using corona discharge ionization source ion mobility spectrometry (CD-IMS). The corresponding electron attachment rate constants varied from 1.26×10-8 cm3/(molecules s) to 8.24×10-9 cm3/(molecules s) as the electric field changed from 200 V/cm to 500 V/cm. At a fixed electric field in the drift region, the attachment rate constants are also detected at different sample concentration. The ionmolecule reaction rate constants for the further reaction between Cl^- and CHCl3 are also detected, which indicates that the technique maybe becomes a new method to research the rate constants between ions and neural molecules. And the reaction rate constants between Cl- and CHCl3 are the first time detected using CD-IMS.展开更多
The standards of plant toxins were separated by a C18 column with gradient elution with 0.1% formic acid/water (V/V) and 0.1% formic acid/acetonitrile (V/V) as mobile phase and acquired by ion mobility-quadrupole time...The standards of plant toxins were separated by a C18 column with gradient elution with 0.1% formic acid/water (V/V) and 0.1% formic acid/acetonitrile (V/V) as mobile phase and acquired by ion mobility-quadrupole time of flight mass spectrometry (IM-QTOF MS) in positive ion mode. A database of 308 plant toxins including retention time, collision cross-section (CCS) and its fragment ions was established. Honey dissolved in water or herbal beverage was extracted by acetonitrile and purified with PSA sorbent, and then acquired by ultrahigh-performance liquid chromatography IM-QTOFMS. The acquired data were processed by comparing with the database we established to confirm the target compounds. The average recoveries for samples at two levels ranged from 60.6% - 120.1%, with relative standard deviation (n = 6) less than 25%. The limit of quantitation for plant toxins ranged from 1 - 20 μg/kg. The developed screening method was used in determination of honey, herbal beverage and honey flavored tea beverage samples. The results showed that berberine was detected in one honey with 1 μg/kg and caffeine was present in some beverages with the concentration from 200 and 5500 μg/kg. This method could meet the requirement for rapid screening of plant toxins in honey and herbal beverage. It can be used for the quality control of honey and herbal beverage in enterprises or quality inspection departments. It also can be used in the rapid screening of food poisoning.展开更多
High field asymmetric wave ion mobility spectrometry (FAIMS) is a powerful tool to detect and characterize gas-phase ions, while the unsolvable partial differential equation of ions moving in ion drift tube poses a ...High field asymmetric wave ion mobility spectrometry (FAIMS) is a powerful tool to detect and characterize gas-phase ions, while the unsolvable partial differential equation of ions moving in ion drift tube poses a big challenge to FAIMS spectral peak analysis. In this work, a universal and effective model of FAIMS spectral peak profile has been proposed by introducing ion trajectory and loss height. With this model, the influence of the structure of ion drift tube, dispersion voltages, compensation voltages, and carrier gas flow rate on the FAIMS spectral peak characteristics like peak shape, full width at half maximum and peak height is analyzed and discussed. The results show that the influence of different factors on the FAIMS spectral peak profile can be qualitatively described by the model which agrees with the experimental data.展开更多
Ion mobility spectrometry (IMS) is a very fast, highly sensitive, and inexpensive technique, it permits efficient monitoring of volatile organic compounds like alcohols. In this article, positive ion mobility spectr...Ion mobility spectrometry (IMS) is a very fast, highly sensitive, and inexpensive technique, it permits efficient monitoring of volatile organic compounds like alcohols. In this article, positive ion mobility spectra for six alcohol organic compounds have been systematically studied for the first time using a high-resolution IMS apparatus equipped with a discharge ionization source. Utilizing protonated water cluster ions (H2O)nH^+ as the reactant ions and clean air as the drift gas, alcohol organic compounds, ethanol, 1- propanol, 2-propanol, 1-butanol, 1-pentanol and 2-octanol, all exhibit product ion characteristic peaks in their respective ion mobility spectrometry, that is a result of proton transfer reactions between the alcohols and reaction ions (H2O)nH^+. The mixture of these alcohols, including two isomers, has been detected, and the results showed that they could be distinguished effectively in the ion mobility spectrum. The reduced mobility values have been determined, which are in very well agreement with the traditional ^63Ni-IMS experimental values. The exponential dilution method was used to calibrate the alcohol concentrations, and a detection limit available for the alcohols is in order of magnitude of a few ng/L.展开更多
To ensure authenticity of sesame oil,an authentication technology was proposed using ion mobility spectrometry(IMS)and chemometrics.One-class classification(OCC)methods including one-class partial least squares(OCPLS)...To ensure authenticity of sesame oil,an authentication technology was proposed using ion mobility spectrometry(IMS)and chemometrics.One-class classification(OCC)methods including one-class partial least squares(OCPLS)and one-class support vector machine(OCSVM)were employed to build authentication models for sesame oil.Subsequently,an independent test set was used to validate the constructed models.Validation set of 45 adulterated oils indicated that prediction correction rate of OCPLS model reached 95.6%(43 out of 45).Moreover,the complete set of sesame oils adulterated by sesame oil essence could be identified as counterfeit.Compared with previous studies,OCPLS model could work to identify untargeted adulteration.In conclusion,OCC method could effectively detect adulterated sesame oils containing as little as 10%other vegetable oils.This study provided a rapid screening method for adulterated sesame oil in market surveillance and a reference for developing authentication methods of other edible oils.展开更多
Exhaled ammonia(NH_(3))is an essential noninvasive biomarker for disease diagnosis.In this study,an acetone-modifier positive photoionization ion mobility spectrometry(AM-PIMS)method was developed for accurate qualita...Exhaled ammonia(NH_(3))is an essential noninvasive biomarker for disease diagnosis.In this study,an acetone-modifier positive photoionization ion mobility spectrometry(AM-PIMS)method was developed for accurate qualitative and quantitative analysis of exhaled NH_(3)with high selectivity and sensitivity.Acetone was introduced into the drift tube along with the drift gas as a modifier,and the characteristic NH_(3)product ion peak of(C_(3)H_(6)O)_(4)NH_(4)^(+)(K_(0)=1.45 cm^(2)/V·s)was obtained through the ion-molecule reaction with acetone reactant ions(C_(3)H_(6)O)_(2)H^(+)(K_(0)=1.87 cm^(2)/V·s),which significantly increased the peak-to-peak resolution and improved the accuracy of exhaled NH_(3)qualitative identification.Moreover,the interference of high humidity and the memory effect of NH_(3)molecules were significantly reduced via online dilution and purging sampling,thus realizing breath-by-breath measurement.As a result,a wide quantitative range of 5.87-140.92μmol/L with a response time of 40 ms was achieved,and the exhaled NH_(3)profile could be synchronized with the concentration curve of exhaled CO_(2).Finally,the analytical capacity of AM-PIMS was demonstrated by measuring the exhaled NH_(3)of healthy subjects,demonstrating its great potential for clinical disease diagnosis.展开更多
Structures of stable compositions of sodium oxide cluster cations (NanOm+,n≤11) have been investigated by ion mobility mass spectrometry. Stoichiometric compositions series, Na(Na2O)(n-1)/2^+(n=3, 5, 7, 9, and 11), w...Structures of stable compositions of sodium oxide cluster cations (NanOm+,n≤11) have been investigated by ion mobility mass spectrometry. Stoichiometric compositions series, Na(Na2O)(n-1)/2^+(n=3, 5, 7, 9, and 11), were observed as stable composition series, and NaO(Na2O)(n-1)/2^+ series (n=5, 7, 9, and 11) were observed as secondary stable series in the mass spectra. To assign the structures of these cluster ion series, collision cross sections between the ions and helium buffer gas were determined experimentally from the ion mobility measurements. Theoretical collision cross sections were also calculated for optimized structures of these compositions. Finally, the structures of Na(Na2O)(n-1)/2^+ and NaO(Na2O)(n-1)/2^+ were assigned to those having similar structural frames for each n except for n=9. All bonds in the assigned structures of Na(Na2O)(n-1)/2^+ were between sodium and oxygen. On the other hand, there was one O-O bond in addition to Na-O bonds in NaO(Na2O)(n-1)/2^+. This result indicates that NaO(Na2O)(n-1)/2^+ have a peroxide ion (O22-) as a substitute for an oxide ion (O2-) of Na(Na2O)(n-1)/2^+. As a result, both stable series, Na(Na2O)(n-1)/2^+ and NaO(Na2O)(n-1)/2^+, are closed-shell compositions. These closed-shell characteristics have a strong influence on the stability of sodium oxide cluster cations.展开更多
Different environmental conditions in which, equipment based on differential ion mobility spectrometry must operate, forced designers and engineers to analyze the impact of, among other things, external factors on the...Different environmental conditions in which, equipment based on differential ion mobility spectrometry must operate, forced designers and engineers to analyze the impact of, among other things, external factors on their performance and efficiency. These devices, thanks to the DMS technology, can identify and characterize the ions contained in the gaseous state. However, many areas of this technique remain undiscovered, which should be examined in more detail. One such aspect is the influence of the temperature of gaseous medium, containing tested analyte. The research presented in this article shows why temperature is an important factor on the distribution of generated peaks. The results are shown for different spectra generated carrier gas temperatures (50°C - 80°C) in which ions were toxic warfare agents. Based on those graphs, it can be stated that increase of the temperature allows for better separation of the peaks from the background. Because of the similar ion mobility of the analyte and background ions for high and low electric field, DMS device can send false alarms, due to the poor interpretations of passing a signal to them. So to be able to accurately assess the level of risk due to the presence of substances BST in air, the test medium was added to isobutanol and isopropanol additives. They help better analyze and separate measured ions.展开更多
The paper investigated a new method of analyzing perfume odors.The study adopted IMS with glow dischargeas ion source and with positive ion mode.We got the quality characteristics of perfume odors in this way without ...The paper investigated a new method of analyzing perfume odors.The study adopted IMS with glow dischargeas ion source and with positive ion mode.We got the quality characteristics of perfume odors in this way without any collection and concentration process.The quality of perfume odors can be identified by IMS peak characteristics,and the characteristics of different quality of perfume also can be identified.In summary,the IMS is an effective technique in the perfume odor detection,it is also a new way of gas sample analysis.展开更多
This work first describes a simple approach for the untargeted profiling of volatile compounds for distinguishing between white duck down (WDD) and white goose down (WGD) based on resolution-optimized GC-IMS combined ...This work first describes a simple approach for the untargeted profiling of volatile compounds for distinguishing between white duck down (WDD) and white goose down (WGD) based on resolution-optimized GC-IMS combined with optimized chemometric techniques, namely PCA. The detection method for down samples was established by using GC-IMS. Meanwhile, the reason of unpleasant odors caused by WDD was explained on the basis of the characteristic volatile compounds identification. GC-IMS fingerprinting can be considered a revolutionary approach for a truly fully automatable, cost-efficient, and in particular highly sensitive method. A total of 22 compounds were successfully separated and identified through GC-IMS method, and the significant differences in volatile compounds were observed in three parts of WDD and WGD samples. The most characteristic volatile compounds of WGD belong to aldehydes, whereas carboxylic acids from WDD were detected generated by autoxidation reaction. Meanwhile, the main reason of unpleasant odor generation was possibly attributed to the high concentration of volatile carboxylic acids of WDD. Therefore, the constructed model presents a simple and efficient method of analysis and serves as a basis for down processing and quality control.展开更多
基金This work was financially supported by the National Key Research and Development Program of China(Grant No.2018YFC1704500)Tianjin Committee of Science and Technology of China(Grant No.21ZYJDJC00080)National Natural Science Foundation of China(Grant No.81872996).
文摘The complex composition of herbal metabolites necessitates the development of powerful analytical techniques aimed to identify the bioactive components.The seeds of Descurainia sophia(SDS)are utilized in China as a cough and asthma relieving agent.Herein,a dimension-enhanced integral approach,by combining ultra-high performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry(UHPLC/IMQTOF-MS)and intelligent peak annotation,was developed to rapidly characterize the multicomponents from SDS.Good chromatographic separation was achieved within 38 min on a UPLC CSH C18(2.1×100 mm,1.7μm)column which was eluted by 0.1%formic acid in water(water phase)and acetonitrile(organic phase).Collision-induced dissociation-MS^(2)data were acquired by the data-independent high-definition MS^(E)(HDMS^(E))in both the negative and positive electrospray ionization modes.A major components knockout strategy was applied to improve the characterization of those minor ingredients by enhancing the injection volume.Moreover,a self-built chemistry library was established,which could be matched by the UNIFI software enabling automatic peak annotation of the obtained HDMS^(E)data.As a result of applying the intelligent peak annotation workflows and further confirmation process,a total of 53 compounds were identified or tentatively characterized from the SDS,including 29 flavonoids,one uridine derivative,four glucosides,one lignin,one phenolic compound,and 17 others.Notably,four-dimensional information related to the structure(e.g.,retention time,collision cross section,MS^(1)and MS^(2)data)was obtained for each component by the developed integral approach,and the results would greatly benefit the quality control of SDS.
文摘A combination of high-field asymmetric waveform ion mobility spectrometry (FAIMS) with mass spectrometer (MS) was analyzed. FAIMS separates ions from the volatile organic compounds in the gas-phase as an ion-filter for MS. The sample ions were created at ambient pressure by ion source, which was equipped with a 10.6 eV UV discharge lamp (A=116.5 nm). The drift tube of FAIMS is composed of two parallel planar electrodes and the dimension is 10 mm×8 mm×0.5 mm. FAIMS was investigated when driven by the high-filed rectangular asymmetric waveform with the peak-to-peak voltage of 1.36 kV at the frequency of 1 MHz and the duty cycle of 30%. The acetone, the butanone, and their mixture were adopted to characterize the FAIMS-MS. The mass spectra obtained from MS illustrate that there are ion-molecular reactions between the ions and the sample neutral molecular. And the proton transfer behavior in the mixture of the acetone and the butanone is also observed. With the compensation voltage tuned from -30 V to 10 V with a step size of 0.1 V, the ion pre-separation before MS is realized.
基金ACKNOWLEDGMENTS The work was support by the National Natural Science Foundation of China (No.20707025 and No.20907054) and the Excellent Youth Foundation of Anhui Province Scientific Committee (No.06045098).
文摘The dissociative electron attachment process for CHCl3 at different electric field have been studied with nitrogen as drift and carrier gas using corona discharge ionization source ion mobility spectrometry (CD-IMS). The corresponding electron attachment rate constants varied from 1.26×10-8 cm3/(molecules s) to 8.24×10-9 cm3/(molecules s) as the electric field changed from 200 V/cm to 500 V/cm. At a fixed electric field in the drift region, the attachment rate constants are also detected at different sample concentration. The ionmolecule reaction rate constants for the further reaction between Cl^- and CHCl3 are also detected, which indicates that the technique maybe becomes a new method to research the rate constants between ions and neural molecules. And the reaction rate constants between Cl- and CHCl3 are the first time detected using CD-IMS.
文摘The standards of plant toxins were separated by a C18 column with gradient elution with 0.1% formic acid/water (V/V) and 0.1% formic acid/acetonitrile (V/V) as mobile phase and acquired by ion mobility-quadrupole time of flight mass spectrometry (IM-QTOF MS) in positive ion mode. A database of 308 plant toxins including retention time, collision cross-section (CCS) and its fragment ions was established. Honey dissolved in water or herbal beverage was extracted by acetonitrile and purified with PSA sorbent, and then acquired by ultrahigh-performance liquid chromatography IM-QTOFMS. The acquired data were processed by comparing with the database we established to confirm the target compounds. The average recoveries for samples at two levels ranged from 60.6% - 120.1%, with relative standard deviation (n = 6) less than 25%. The limit of quantitation for plant toxins ranged from 1 - 20 μg/kg. The developed screening method was used in determination of honey, herbal beverage and honey flavored tea beverage samples. The results showed that berberine was detected in one honey with 1 μg/kg and caffeine was present in some beverages with the concentration from 200 and 5500 μg/kg. This method could meet the requirement for rapid screening of plant toxins in honey and herbal beverage. It can be used for the quality control of honey and herbal beverage in enterprises or quality inspection departments. It also can be used in the rapid screening of food poisoning.
基金This work was supported by the National Natural Science Foundation of China (No.60871037 andNo.61004133) and the Innovation and Technology Fund of Hefei Institutes of Physical Science.
文摘High field asymmetric wave ion mobility spectrometry (FAIMS) is a powerful tool to detect and characterize gas-phase ions, while the unsolvable partial differential equation of ions moving in ion drift tube poses a big challenge to FAIMS spectral peak analysis. In this work, a universal and effective model of FAIMS spectral peak profile has been proposed by introducing ion trajectory and loss height. With this model, the influence of the structure of ion drift tube, dispersion voltages, compensation voltages, and carrier gas flow rate on the FAIMS spectral peak characteristics like peak shape, full width at half maximum and peak height is analyzed and discussed. The results show that the influence of different factors on the FAIMS spectral peak profile can be qualitatively described by the model which agrees with the experimental data.
基金Project supported by the National Natural Science Foundation of China(No.20577049)the Excellent Youth Foundation of Anhui Province Scientific Committee(No.06045098)the Hefei Institues of Physical Science,Chinese Academy of Sciences.
文摘Ion mobility spectrometry (IMS) is a very fast, highly sensitive, and inexpensive technique, it permits efficient monitoring of volatile organic compounds like alcohols. In this article, positive ion mobility spectra for six alcohol organic compounds have been systematically studied for the first time using a high-resolution IMS apparatus equipped with a discharge ionization source. Utilizing protonated water cluster ions (H2O)nH^+ as the reactant ions and clean air as the drift gas, alcohol organic compounds, ethanol, 1- propanol, 2-propanol, 1-butanol, 1-pentanol and 2-octanol, all exhibit product ion characteristic peaks in their respective ion mobility spectrometry, that is a result of proton transfer reactions between the alcohols and reaction ions (H2O)nH^+. The mixture of these alcohols, including two isomers, has been detected, and the results showed that they could be distinguished effectively in the ion mobility spectrum. The reduced mobility values have been determined, which are in very well agreement with the traditional ^63Ni-IMS experimental values. The exponential dilution method was used to calibrate the alcohol concentrations, and a detection limit available for the alcohols is in order of magnitude of a few ng/L.
基金This work was supported by the National Science and Technology Major Project of China(2017YFC1601700)the National Nature Foundation Committee of P.R.China(31871886)+2 种基金the National Major Project for Agro-product Quality&Safety Risk Assessment(GJFP2019003)the earmarked fund for China Agricultural Research System(CARS-12)the Fundamental Research Funds for Central Non-profit Scientific Institution(1610172018002 and 1610172018012).
文摘To ensure authenticity of sesame oil,an authentication technology was proposed using ion mobility spectrometry(IMS)and chemometrics.One-class classification(OCC)methods including one-class partial least squares(OCPLS)and one-class support vector machine(OCSVM)were employed to build authentication models for sesame oil.Subsequently,an independent test set was used to validate the constructed models.Validation set of 45 adulterated oils indicated that prediction correction rate of OCPLS model reached 95.6%(43 out of 45).Moreover,the complete set of sesame oils adulterated by sesame oil essence could be identified as counterfeit.Compared with previous studies,OCPLS model could work to identify untargeted adulteration.In conclusion,OCC method could effectively detect adulterated sesame oils containing as little as 10%other vegetable oils.This study provided a rapid screening method for adulterated sesame oil in market surveillance and a reference for developing authentication methods of other edible oils.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.:22027804,21974141,and 21904125)Natural Science Foundation of Liaoning Province(Grant Nos.:2022-MS-019 and 2022-MS-016)+2 种基金Science and Technology Innovation Foundation of Dalian(Grant No.:2022JJ13SN096)Dalian Institute of Chemical Physics(Grant Nos.:DICP I202141 and DICP I202144)1+X Program for Large Cohort Study-Clinical Research Incubation Project,The Second Hospital of Dalian Medical University(Project No.:2022DXDL01).
文摘Exhaled ammonia(NH_(3))is an essential noninvasive biomarker for disease diagnosis.In this study,an acetone-modifier positive photoionization ion mobility spectrometry(AM-PIMS)method was developed for accurate qualitative and quantitative analysis of exhaled NH_(3)with high selectivity and sensitivity.Acetone was introduced into the drift tube along with the drift gas as a modifier,and the characteristic NH_(3)product ion peak of(C_(3)H_(6)O)_(4)NH_(4)^(+)(K_(0)=1.45 cm^(2)/V·s)was obtained through the ion-molecule reaction with acetone reactant ions(C_(3)H_(6)O)_(2)H^(+)(K_(0)=1.87 cm^(2)/V·s),which significantly increased the peak-to-peak resolution and improved the accuracy of exhaled NH_(3)qualitative identification.Moreover,the interference of high humidity and the memory effect of NH_(3)molecules were significantly reduced via online dilution and purging sampling,thus realizing breath-by-breath measurement.As a result,a wide quantitative range of 5.87-140.92μmol/L with a response time of 40 ms was achieved,and the exhaled NH_(3)profile could be synchronized with the concentration curve of exhaled CO_(2).Finally,the analytical capacity of AM-PIMS was demonstrated by measuring the exhaled NH_(3)of healthy subjects,demonstrating its great potential for clinical disease diagnosis.
基金supported by JSPS KAKENHI Grant (No.JP18K14173, No.JP17K14433, and No.JP17J02017)a JSPS Research Fellowship
文摘Structures of stable compositions of sodium oxide cluster cations (NanOm+,n≤11) have been investigated by ion mobility mass spectrometry. Stoichiometric compositions series, Na(Na2O)(n-1)/2^+(n=3, 5, 7, 9, and 11), were observed as stable composition series, and NaO(Na2O)(n-1)/2^+ series (n=5, 7, 9, and 11) were observed as secondary stable series in the mass spectra. To assign the structures of these cluster ion series, collision cross sections between the ions and helium buffer gas were determined experimentally from the ion mobility measurements. Theoretical collision cross sections were also calculated for optimized structures of these compositions. Finally, the structures of Na(Na2O)(n-1)/2^+ and NaO(Na2O)(n-1)/2^+ were assigned to those having similar structural frames for each n except for n=9. All bonds in the assigned structures of Na(Na2O)(n-1)/2^+ were between sodium and oxygen. On the other hand, there was one O-O bond in addition to Na-O bonds in NaO(Na2O)(n-1)/2^+. This result indicates that NaO(Na2O)(n-1)/2^+ have a peroxide ion (O22-) as a substitute for an oxide ion (O2-) of Na(Na2O)(n-1)/2^+. As a result, both stable series, Na(Na2O)(n-1)/2^+ and NaO(Na2O)(n-1)/2^+, are closed-shell compositions. These closed-shell characteristics have a strong influence on the stability of sodium oxide cluster cations.
文摘Different environmental conditions in which, equipment based on differential ion mobility spectrometry must operate, forced designers and engineers to analyze the impact of, among other things, external factors on their performance and efficiency. These devices, thanks to the DMS technology, can identify and characterize the ions contained in the gaseous state. However, many areas of this technique remain undiscovered, which should be examined in more detail. One such aspect is the influence of the temperature of gaseous medium, containing tested analyte. The research presented in this article shows why temperature is an important factor on the distribution of generated peaks. The results are shown for different spectra generated carrier gas temperatures (50°C - 80°C) in which ions were toxic warfare agents. Based on those graphs, it can be stated that increase of the temperature allows for better separation of the peaks from the background. Because of the similar ion mobility of the analyte and background ions for high and low electric field, DMS device can send false alarms, due to the poor interpretations of passing a signal to them. So to be able to accurately assess the level of risk due to the presence of substances BST in air, the test medium was added to isobutanol and isopropanol additives. They help better analyze and separate measured ions.
文摘The paper investigated a new method of analyzing perfume odors.The study adopted IMS with glow dischargeas ion source and with positive ion mode.We got the quality characteristics of perfume odors in this way without any collection and concentration process.The quality of perfume odors can be identified by IMS peak characteristics,and the characteristics of different quality of perfume also can be identified.In summary,the IMS is an effective technique in the perfume odor detection,it is also a new way of gas sample analysis.
文摘This work first describes a simple approach for the untargeted profiling of volatile compounds for distinguishing between white duck down (WDD) and white goose down (WGD) based on resolution-optimized GC-IMS combined with optimized chemometric techniques, namely PCA. The detection method for down samples was established by using GC-IMS. Meanwhile, the reason of unpleasant odors caused by WDD was explained on the basis of the characteristic volatile compounds identification. GC-IMS fingerprinting can be considered a revolutionary approach for a truly fully automatable, cost-efficient, and in particular highly sensitive method. A total of 22 compounds were successfully separated and identified through GC-IMS method, and the significant differences in volatile compounds were observed in three parts of WDD and WGD samples. The most characteristic volatile compounds of WGD belong to aldehydes, whereas carboxylic acids from WDD were detected generated by autoxidation reaction. Meanwhile, the main reason of unpleasant odor generation was possibly attributed to the high concentration of volatile carboxylic acids of WDD. Therefore, the constructed model presents a simple and efficient method of analysis and serves as a basis for down processing and quality control.