本文对38Cr Mo Al钢离子渗氮与激光淬火硬化层倍增技术进行了研究;首先对渗氮层氮浓度分布及激光温度场进行模拟,并采用Thermo-Calc软件对Fe-C-N三相点进行了计算,从而对复合改性工艺进行设计;然后通过实验对模拟计算结果进行验证。结...本文对38Cr Mo Al钢离子渗氮与激光淬火硬化层倍增技术进行了研究;首先对渗氮层氮浓度分布及激光温度场进行模拟,并采用Thermo-Calc软件对Fe-C-N三相点进行了计算,从而对复合改性工艺进行设计;然后通过实验对模拟计算结果进行验证。结果表明:渗氮与激光淬火硬化层深相比于渗氮层或激光淬火层均有大幅度提升。渗氮与激光淬火硬化层倍增机制在于N元素的引入使相变温度从Fe-C二元共析点727℃降低到Fe-N-C三元共析点的577℃,因此在相同的温度分布下表层能够发生相变硬化的深度增加。展开更多
文摘本文对38Cr Mo Al钢离子渗氮与激光淬火硬化层倍增技术进行了研究;首先对渗氮层氮浓度分布及激光温度场进行模拟,并采用Thermo-Calc软件对Fe-C-N三相点进行了计算,从而对复合改性工艺进行设计;然后通过实验对模拟计算结果进行验证。结果表明:渗氮与激光淬火硬化层深相比于渗氮层或激光淬火层均有大幅度提升。渗氮与激光淬火硬化层倍增机制在于N元素的引入使相变温度从Fe-C二元共析点727℃降低到Fe-N-C三元共析点的577℃,因此在相同的温度分布下表层能够发生相变硬化的深度增加。