[Objectives]The paper was to establish an ultra high performance liquid chromatography-quadrupole/linear ion trap complex mass spectrometry for the determination of 10 kinds ofα2-receptor agonists in animal derived f...[Objectives]The paper was to establish an ultra high performance liquid chromatography-quadrupole/linear ion trap complex mass spectrometry for the determination of 10 kinds ofα2-receptor agonists in animal derived food.[Methods]The samples were extracted with sodium carbonate buffer solution and ethyl acetate,and analyzed by mass spectrometry after solid phase extraction and high performance liquid chromatography separation.[Results]Ten kinds ofα2-receptor agonists showed a good linear relationship in the range of 1-100μg/mL,with the average recovery of over 69%and the relative standard deviation less than 8.32%.The detection limit of 10 kinds of α_(2)-receptor agonists was up to 1μg/kg.[Conclusions]The method has good selectivity and strong anti-interference ability,and can meet the requirements of 10 kinds ofα2-receptor agonists residues in animal derived food.展开更多
Ionic Polymer-Metal Composite (IPMC) can work as an actuator by applying a few voltages.A thick IPMC actuator,where Nafion-117 membrane was synthesized with polypyrrole/alumina composite filler,was analyzed to verify ...Ionic Polymer-Metal Composite (IPMC) can work as an actuator by applying a few voltages.A thick IPMC actuator,where Nafion-117 membrane was synthesized with polypyrrole/alumina composite filler,was analyzed to verify the equivalent beam and equivalent bimorph beam models.The blocking force and tip displacement of the IPMC actuator were measured with a DC power supply and Young's modulus of the IPMC strip was measured by bending and tensile tests respectively.The calculated maximum tip displacement and the Young's modulus by the equivalent beam model were almost identical to the corresponding measured data.Finite element analysis with thermal analogy technique was utilized in the equivalent bimorph beam model to numerically reproduce the force-displacement relationship of the IPMC actuator.The results by the equivalent bimorph beam model agreed well with the force-displacement relationship acquired by the measured data.It is confirmed that the equivalent beam and equivalent bimorph beam models are practically and effectively suitable for predicting the tip displacement,blocking force and Young's modulus of IPMC actuators with different thickness and different composite of ionic polymer membrane.展开更多
As a new ionic polymer-metal composite(IPMC) for artificial muscle,the mechanical performance parameters and the relationship between the deformation and the electrical parameters of the IPMC were studied. With the di...As a new ionic polymer-metal composite(IPMC) for artificial muscle,the mechanical performance parameters and the relationship between the deformation and the electrical parameters of the IPMC were studied. With the digital speckle correlation method,the constitutive relationship of the IPMC was confirmed. With non-contact photography measurement,a cantilever setup was designed to confirm the relationship between the deformation of the IPMC film and the applied voltage. The relationship curve of tip displacement of the IPMC cantilever setup vs the voltage was achieved. The results indicate that the IPMC is isotropic,its elastic modulus is 232 MPa and Poisson ratio is 0.163. The curve achieved from the test of the tip displacement of the IPMC cantilever setup shows that the tip displacement reaches the maximum when the stimulated voltage is 5 V. And the tip displacement descends largely when the frequency of the applied voltage is between 30 mHz and 100 mHz.展开更多
Ion-exchange polymer-metal composite (IPMC) is a new electroactive material. It has large deformation and high force weight ratio in the presence of low voltage (〈1.5 V). In this study a soft actuator known as ar...Ion-exchange polymer-metal composite (IPMC) is a new electroactive material. It has large deformation and high force weight ratio in the presence of low voltage (〈1.5 V). In this study a soft actuator known as artificial muscle based on IPMC was prepared. The IPMC actuator is composed of a perfluorinated ion-exchange membrane and platinum plated on both sides of the membrane by chemical means. Experiences and some key points are introduced in preparation of the IPMC. Electromechanical behaviors of the actuator are investigated, Factors related to the actuator performance are discussed.展开更多
Ionic polymer-metal composites (IPMCs) are especially interesting electroactive polymers because they show large a deformation in the presence of a very low driving voltage (around 1 - 2 V) and several applications ha...Ionic polymer-metal composites (IPMCs) are especially interesting electroactive polymers because they show large a deformation in the presence of a very low driving voltage (around 1 - 2 V) and several applications have recently been proposed. Normally a humid environment is required for the best operation, although some IPMCs can operate in a dry environment, after proper encapsulation or if a solid electrolyte is used in the manufacturing process. However, such solutions usually lead to increasing mechanical stiffness and to a reduction of actuation capabilities. In this study we focus on the behaviour of non-encapsulated IPMCs as actuators in dry environments, in order to obtain relevant information for design tasks linked to the development of active devices based on this kind of smart material. The non-linear response obtained in the characterisation tests is especially well-suited to modelling these actuators with the help of artificial neural networks (ANNs). Once trained with the help of characterisation data, such neural networks prove to be a precise simulation tool for describing IPMC response in dry environments.展开更多
Composite solid electrolytes(CSEs)with poly(ethylene oxide)(PEO)have become fairly prevalent for fabricating high-performance solid-state lithium metal batteries due to their high Li~+solvating capability,flexible pro...Composite solid electrolytes(CSEs)with poly(ethylene oxide)(PEO)have become fairly prevalent for fabricating high-performance solid-state lithium metal batteries due to their high Li~+solvating capability,flexible processability and low cost.However,unsatisfactory room-temperature ionic conductivity,weak interfacial compatibility and uncontrollable Li dendrite growth seriously hinder their progress.Enormous efforts have been devoted to combining PEO with ceramics either as fillers or major matrix with the rational design of two-phase architecture,spatial distribution and content,which is anticipated to hold the key to increasing ionic conductivity and resolving interfacial compatibility within CSEs and between CSEs/electrodes.Unfortunately,a comprehensive review exclusively discussing the design,preparation and application of PEO/ceramic-based CSEs is largely lacking,in spite of tremendous reviews dealing with a broad spectrum of polymers and ceramics.Consequently,this review targets recent advances in PEO/ceramicbased CSEs,starting with a brief introduction,followed by their ionic conduction mechanism,preparation methods,and then an emphasis on resolving ionic conductivity and interfacial compatibility.Afterward,their applications in solid-state lithium metal batteries with transition metal oxides and sulfur cathodes are summarized.Finally,a summary and outlook on existing challenges and future research directions are proposed.展开更多
Despite the presence of Li F components in the solid electrolyte interphase(SEI)formed on the graphite anode surface by conventional electrolyte,these Li F components primarily exist in an amorphous state,rendering th...Despite the presence of Li F components in the solid electrolyte interphase(SEI)formed on the graphite anode surface by conventional electrolyte,these Li F components primarily exist in an amorphous state,rendering them incapable of effectively inhibiting the exchange reaction between lithium ions and transition metal ions in the electrolyte.Consequently,nearly all lithium ions within the SEI film are replaced by transition metal ions,resulting in an increase in interphacial impedance and a decrease in stability.Herein,we demonstrate that the SEI film,constructed by fluoroethylene carbonate(FEC)additive rich in crystalline Li F,effectively inhibits the undesired Li^(+)/Co^(2+)ion exchange reaction,thereby suppressing the deposition of cobalt compounds and metallic cobalt.Furthermore,the deposited cobalt compounds exhibit enhanced structural stability and reduced catalytic activity with minimal impact on the interphacial stability of the graphite anode.Our findings reveal the crucial influence of SEI film composition and structure on the deposition and hazards associated with transition metal ions,providing valuable guidance for designing next-generation electrolytes.展开更多
Despite the enormous interest in inorganic/polymer composite solid-state electrolytes(CSEs)for solid-state batteries(SSBs),the underlying ion transport phenomena in CSEs have not yet been elucidated.Here,we address th...Despite the enormous interest in inorganic/polymer composite solid-state electrolytes(CSEs)for solid-state batteries(SSBs),the underlying ion transport phenomena in CSEs have not yet been elucidated.Here,we address this issue by formulating a mechanistic understanding of bi-percolating ion channels formation and ion conduction across inorganic-polymer electrolyte interfaces in CSEs.A model CSE is composed of argyrodite-type Li_6PS_5Cl(LPSCl)and gel polymer electrolyte(GPE,including Li~+-glyme complex as an ion-conducting medium).The percolation threshold of the LPSCl phase in the CSE strongly depends on the elasticity of the GPE phase.Additionally,manipulating the solvation/desolvation behavior of the Li~+-glyme complex in the GPE facilitates ion conduction across the LPSCl-GPE interface.The resulting scalable CSE(area=8×6(cm×cm),thickness~40μm)can be assembled with a high-mass-loading LiNi_(0.7)Co_(0.15)Mn_(0.15)O_(2)cathode(areal-mass-loading=39 mg cm~(-2))and a graphite anode(negative(N)/positive(P)capacity ratio=1.1)in order to fabricate an SSB full cell with bi-cell configuration.Under this constrained cell condition,the SSB full cell exhibits high volumetric energy density(480 Wh L_(cell)~(-1))and stable cyclability at 25℃,far exceeding the values reported by previous CSE-based SSBs.展开更多
The sluggish redox kinetics of polysulfides in lithium-sulfur(Li-S)batteries are a significant obstacle to their widespread adoption as energy storage devices.However,recent studies have shown that tungsten oxide(WO_(...The sluggish redox kinetics of polysulfides in lithium-sulfur(Li-S)batteries are a significant obstacle to their widespread adoption as energy storage devices.However,recent studies have shown that tungsten oxide(WO_(3))can facilitate the conversion kinetics of polysulfides in Li-S batteries.Herein,we fabricated host materials for sulfur using nitrogen-doped carbon nanotubes(N-CNTs)and WO_(3).We used low-cost components and simple procedures to overcome the poor electrical conductivity that is a disadvantage of metal oxides.The composites of WO_(3) and N-CNTs(WO_(3)/N-CNTs)create a stable framework structure,fast ion diffusion channels,and a 3D electron transport network during electrochemical reaction processes.As a result,the WO_(3)/N-CNT-Li2S6 cathode demonstrates high initial capacity(1162 mA·h·g^(-1) at 0.5℃),excellent rate performance(618 mA·h·g^(-1) at 5.5℃),and a low capacity decay rate(0.093%up to 600 cycles at 2℃).This work presents a novel approach for preparing tungsten oxide/carbon composite catalysts that facilitate the redox kinetics of polysulfide conversion.展开更多
Currently,polymer nanosponges have received extensive attention.However,developing new synthetic techniques for novel nanosponges remains a challenge.Furthermore,to date,composite nanosponge adsorbents based on waterb...Currently,polymer nanosponges have received extensive attention.However,developing new synthetic techniques for novel nanosponges remains a challenge.Furthermore,to date,composite nanosponge adsorbents based on waterborne polyurethane(WPU)andβ-cyclodextrin(β-CD)have not been reported.Herein,a novel green method,ion condensation method,was developed in this study for the preparation of polymer nanosponge adsorbents for efficient removal of dyes from wastewater.Based on the principle of charge repulsion between nanoparticles to maintain emulsion stability,waterborne polyurethane/β-cyclodextrin composite nanosponges(WPU-x,y)were prepared by coagulating the emulsions synthesized from 2,2-dimethylolpropionic acid,polypropylene glycol and hexamethylene diisocyanate as raw materials in a mixture of hydrochloric acid and anhydrous ethanol.The structure and appearance of WPU-x,y were characterized by attenuated total reflectance Fourier transform infrared spectroscopy,thermal gravimetric analyzer,scanning electron microscope and mercury intrusion porosimetry.The adsorption capacity of WPU-x,y was tested by parameters such as cross-linking degree,β-CD dosage,contact time,initial dye concentration and p H value.The study found that WPU-4,4.62 had the best adsorption effect on methylene blue(MB),the maximum removal rate was 93.42%,and the maximum adsorption capacity was 136.03 mg·g^(-1).Moreover,the Sips isotherm and pseudo-second-order-model were suitable for MB adsorption.Therefore,this study provides some perspectives for the fabrication of nanosponge adsorbents.展开更多
Separators have been gaining increasing attention to improve the performance of lithium ion batteries(LIBs),especially for high safe and long cycle life.However,commercial polyolefin separators still face the problems...Separators have been gaining increasing attention to improve the performance of lithium ion batteries(LIBs),especially for high safe and long cycle life.However,commercial polyolefin separators still face the problems of rapid capacity decay and safety issues due to the poor wettability with electrolytes and low thermal stability.Herein,a novel composite separator is proposed by introducing a surfactant of sodium dodecyl thiosulfate(SDS)into the polytetrafluoroethylene(PTFE)substrate with the binder of polyacrylic acid(PAA)through the suction filtration method.The introduction of PAA/SDS enhances the adsorption energy between PTFE substrate and electrolyte through density functional theory calculations,which improves wettability and electrolyte uptake of the separator significantly.The asachieved composite separator enables the LIBs to own high Li^(+)conductivity(0.64×10^(-3)S cm^(-1))and Li^(+)transference number(0.63),further leading to a high capacity retention of 93.50%after 500 cycles at 1 C.In addition,the uniform and smooth surface morphology of Li metal employed the composite separator after cycling indicates that the lithium dendrites can be successfully inhibited.This work indicates a promising route for the preparation of a novel composite separator for high safe LIBs.展开更多
Developing laminar composite solid electrolyte with ultrathin thickness and continuous conduction channels in vertical direction holds great promise for all-solid-state lithium batteries.Herein,a thin,laminar solid el...Developing laminar composite solid electrolyte with ultrathin thickness and continuous conduction channels in vertical direction holds great promise for all-solid-state lithium batteries.Herein,a thin,laminar solid electrolyte is synthesized by filtrating–NH 2 functionalized metal-organic framework nanosheets and then being threaded with poly(ethylene oxide)chains induced by the hydrogen-bonding interaction from–NH_(2) groups.It is demonstrated that the threaded poly(ethylene oxide)chains lock the adjacent metal-organic framework nanosheets,giving highly enhanced structural stability(Young’s modulus,1.3 GPa)to 7.5-μm-thick laminar composite solid electrolyte.Importantly,these poly(ethylene oxide)chains with stretching structure serve as continuous conduction pathways along the chains in pores.It makes the non-conduction laminar metal-organic framework electrolyte highly conductive:3.97×10^(−5) S cm^(−1) at 25℃,which is even over 25 times higher than that of pure poly(ethylene oxide)electrolyte.The assembled lithium cell,thus,acquires superior cycling stability,initial discharge capacity(148 mAh g^(−1) at 0.5 C and 60℃),and retention(94% after 150 cycles).Besides,the pore size of nanosheet is tailored(24.5–40.9˚A)to evaluate the mechanisms of chain conformation and ion transport in confined space.It shows that the confined pore only with proper size could facilitate the stretching of poly(ethylene oxide)chains,and meanwhile inhibit their disorder degree.Specifically,the pore size of 33.8˚A shows optimized confinement effect with trans-poly(ethylene oxide)and cis-poly(ethylene oxide)conformation,which offers great significance in ion conduction.Our design of poly(ethylene oxide)-threaded architecture provides a platform and paves a way to the rational design of next-generation high-performance porous electrolytes.展开更多
TiO2/V2O5 catalyst doped with rare earth ions was prepared by sol-gel method. Titanium tetrapropoxide and vanadium pentoxide were used as precursor of the composite catalyst and rare earth ions were used as dopant. Th...TiO2/V2O5 catalyst doped with rare earth ions was prepared by sol-gel method. Titanium tetrapropoxide and vanadium pentoxide were used as precursor of the composite catalyst and rare earth ions were used as dopant. The crystal phases, crystalline sizes, microstructure, absorption spectra of doped composite catalyst were studied by XRD, EDS, FT-IR and UV-Vis. Photoactivity of the prepared catalyst under ultraviolet irradiation were evaluated by degradation of methyl orange (MO) in aqueous solution. It is shown that the prepared catalyst is composed of anatase and futile. The rare earth ions are highly dispersed in composite catalyst. All the doped catalysts appear higher photocatalytic activity than TiO2/V2O5 catalyst and catalyst doped with Ce^4+ present the best activity to MO.展开更多
Lead adsorption of zinc oxide-coated ACOR montmorillonite was investigated in batches and under reducing conditions at ambient temperature. The presence of zinc oxide coating significantly enhanced the adsorption of P...Lead adsorption of zinc oxide-coated ACOR montmorillonite was investigated in batches and under reducing conditions at ambient temperature. The presence of zinc oxide coating significantly enhanced the adsorption of Pb^(2+) ions by ACOR montmorillonite. Characterization of adsorbents involved the use of X-ray diffraction, sodium saturation techniques, coulter laser analysis, scanning electron microscopy, and electron dispersive spectroscopy.Synthesis involved the trimetric process, activation of the ACOR montmorillonite and reacting of the same with zinc nitrate to produce a zinc oxide composite solid at 450 °C.The reaction mechanism indicated less than one proton coefficient, and higher mass transfer rates, when compared with bare montmorillonite. Intraparticle diffusion was higher than the value recorded for the bare montmorillonite. Reactions based on initial Pb^(2+) concentration indicated that coated montmorillonite gradually became saturated as the concentration was increased. Reactions based on solid concentration demonstrated a complex change in the capacity of adsorption over different Pb^(2+) concentrations(10–40 mg L^(-1)) and solid concentrations(2–10 g L^(-1)). The specific surface area reduction, particle size increase, mineral aggregation, and concentration gradient effect controlled the complex changes in adsorption.展开更多
Alloy anodes were studied for pursuing Sn-based microcomposite synthesis, assembly and performance for lithium ion batteries. The self-assembled Sn-Co-C composites with nano-scaled microstructures were prepared via so...Alloy anodes were studied for pursuing Sn-based microcomposite synthesis, assembly and performance for lithium ion batteries. The self-assembled Sn-Co-C composites with nano-scaled microstructures were prepared via solution method and carbothermal technology. The morphology and physical structure were investigated with scanning electron microscope (SEM) and X-ray diffraction (XRD). The as-prepared materials were assembled to half cell coin for the purpose of discussing the galvanostatic cycling, cyclic voltammetry and rate-capability performance. Results reveal that nanoscaled CoSn 2 alloys covered with Sn and C layer by layer are wrapped by cross-linked porous carbon network to form spherical microstructure. This distinguishing feature of Sn-Co-C composites provides a possible solution to the problems of Sn particle aggregation and poor electron transport, and has strong effect on improving electrochemical performance.展开更多
Hybrid CuO-Co_(3)O_(4)nanosphere building blocks have been embedded between the layered nanosheets of reduced graphene oxides with a three dimensional(3D)hybrid architecture(CuO-Co_(3)O_(4)-RGO),which are successfully...Hybrid CuO-Co_(3)O_(4)nanosphere building blocks have been embedded between the layered nanosheets of reduced graphene oxides with a three dimensional(3D)hybrid architecture(CuO-Co_(3)O_(4)-RGO),which are successfully applied as enhanced anodes for lithium-ion batteries(LIBs).The CuO-Co_(3)O_(4)-RGO sandwiched nanostructures exhibit a reversible capacity of~847 mA·h·g^(-1)after 200 cycles’cycling at 100 mA·g^(-1)with a capacity retention of 79%.The CuO-Co_(3)O_(4)-RGO compounds show superior electrochemical properties than the comparative CuO-Co_(3)O_(4),Co_(3)O_(4)and CuO anodes,which may be ascribed to the following reasons:the hybridizing multicomponent can probably give the complementary advantages;the mutual benefit of uniformly distributing nanospheres across the layered RGO nanosheets can avoid the agglomeration of both the RGO nanosheets and the CuO-Co_(3)O_(4) nanospheres;the 3D storage structure as well as the graphene wrapped composite could enhance the electrical conductivity and reduce volume expansion effect associated with the discharge-charge process.展开更多
The ion thruster is an engine with high specific impulse for satellites and spacecrafts,which uses electric energy to boost the spacecraft.The ion optical system,also known as gate assemblies which consist of accelera...The ion thruster is an engine with high specific impulse for satellites and spacecrafts,which uses electric energy to boost the spacecraft.The ion optical system,also known as gate assemblies which consist of acceleration and screen grids,is the key component of the ion thruster.In this paper,the static mechanical properties of the C/C composite grids are evaluated based on the structural design.Representative volume element (RVE) is adopted to simplify the braded composite structure as a continuum material.The dynamical behavior of the 100 mm ion thruster optics in the launch environment (1000g shock-load) is numerically modeled and simulated with the half-sine pulse method.The impact response of the C/C and molybdenum gate assemblies on the stress distribution and deformation is investigated.The simulated results indicate that the magnitudes of the normal displacement of the composite grids subject to the uniformly distributed load are on the same level as molybdenum grids although the normal stiffness of the composite grids is much smaller.When subject to impact loading,the stress distribution in the C/C composite grids is similar to molybdenum grids while the stress magnitude is much smaller.This finding shows that the C/C gate assemblies outperform molybdenum grids and meet the requirement of long lifetime service in space travel.展开更多
Thanks to low cost,high safety,and large energy density,aqueous zinc-ion batteries have attracted tremendous interest worldwide.However,it remains a challenge to develop high-performance cathode materials with an appr...Thanks to low cost,high safety,and large energy density,aqueous zinc-ion batteries have attracted tremendous interest worldwide.However,it remains a challenge to develop high-performance cathode materials with an appropriate method that is easy to realize massive production.Herein,we use a molten salt method to synthesize nanostructured manganese oxides.The crystalline phases of the manganese oxides can be tuned by changing the amount of reduced graphene oxide added to the reactant mixture.It is found that the α-MnO_(2)/Mn_(2)O_(3) nanocomposite with the largest mass ratio of Mn_(2)O_(3) delivers the best electrochemical performances among all the products.And its rate capability and cyclability can be significantly improved by modifying the Zn anode with carbon black coating and nanocellulose binder.In this situation,the nanocomposite can deliver high discharging capacities of 322.1 and 213.6 mAh g^(-1) at 0.2 and 3 Ag^(-1),respectively.After 1000 cycles,it can retain 86.2% of the capacity at the 2 nd cycle.Thus,this nanocomposite holds great promise for practical applications.展开更多
SnO2-Li4Ti5O12 was prepared by sol-gel method using tin tetrachloride,lithium acetate,tetrabutylorthotitanate and aqueous ammonia as starting materials.The composite was characterized by thermogravimertric(TG)analysis...SnO2-Li4Ti5O12 was prepared by sol-gel method using tin tetrachloride,lithium acetate,tetrabutylorthotitanate and aqueous ammonia as starting materials.The composite was characterized by thermogravimertric(TG)analysis and differential thermal analysis(DTA),X-ray diffractometry(XRD)and transmission electron microscopy(TEM)combined with electrochemical tests.The results show that SnO2-Li4Ti5O12 composite derived by sol-gel technique is a nanocomposite with core-shell structure, and the amorphous Li4Ti5O12 layer with 20?40 nm in thickness is coated on the surface of SnO2 particles.Electrochemical tests show that SnO2-Li4Ti5O12 composite delivers a reversible capacity of 688.7 mA·h/g at 0.1C and 93.4%of that is retained after 60 cycles at 0.2C.The amorphous Li4Ti5O12 in composite can accommodate the volume change of SnO2 electrode and prevent the small and active Sn particles from aggregating into larger and inactive Sn clusters during the cycling effectively,and enhance the cycling stability of SnO2 electrode significantly.展开更多
Silicon (Si) has been considered as one of the most promising anode material for tHe next generation lithium-ion batteries (LIBs) with high energy densities, due to its high theoretical capacity, abundant availabi...Silicon (Si) has been considered as one of the most promising anode material for tHe next generation lithium-ion batteries (LIBs) with high energy densities, due to its high theoretical capacity, abundant availability and environmental friendliness. However. silicon materials with low intrinsic electric and ionic conductivity suffer from huge volume variation during lithiation/delithiation processes leading to the pulverization of Si and subsequently resulting in severe capacity fading of the electrodes. Coupling of Si with carbon (C) realizes a favorable combination of the two materials properties, such as high lithiation capacity of Si and excellent mechanical and conductive properties of C. making silicon/carbon composite (Si/C) ideal candidates for LIBs anodes. In this review, recent progresses of Si/C materials utilized in LIBs are summarized in terms of structural design principles, material synthesis methods, morphological characteristics and electrochemical performances by highlighting the material structures. The mechanisms behind the performance enhancement are also discussed. Moreover, other factors that affect the performance of Si/C anodes, such as prelithiation, electrolyte additives, and binders, are also discussed. We aim to present a full scope of the Si/C-based anodes, and help understand and design future structures of Si/C anodes in LIBs,展开更多
基金Supported by Scientific Research Project of Dalian Customs(2022DK09).
文摘[Objectives]The paper was to establish an ultra high performance liquid chromatography-quadrupole/linear ion trap complex mass spectrometry for the determination of 10 kinds ofα2-receptor agonists in animal derived food.[Methods]The samples were extracted with sodium carbonate buffer solution and ethyl acetate,and analyzed by mass spectrometry after solid phase extraction and high performance liquid chromatography separation.[Results]Ten kinds ofα2-receptor agonists showed a good linear relationship in the range of 1-100μg/mL,with the average recovery of over 69%and the relative standard deviation less than 8.32%.The detection limit of 10 kinds of α_(2)-receptor agonists was up to 1μg/kg.[Conclusions]The method has good selectivity and strong anti-interference ability,and can meet the requirements of 10 kinds ofα2-receptor agonists residues in animal derived food.
基金supported by the Defense Acquisition Program Administration (DAPA)the Agency for Defense Development (ADD) in Korea+1 种基金the Korea Research Foundation (KRF-2006-005-J03301)the National Research Foundation (Grant number: 2009-0083068).
文摘Ionic Polymer-Metal Composite (IPMC) can work as an actuator by applying a few voltages.A thick IPMC actuator,where Nafion-117 membrane was synthesized with polypyrrole/alumina composite filler,was analyzed to verify the equivalent beam and equivalent bimorph beam models.The blocking force and tip displacement of the IPMC actuator were measured with a DC power supply and Young's modulus of the IPMC strip was measured by bending and tensile tests respectively.The calculated maximum tip displacement and the Young's modulus by the equivalent beam model were almost identical to the corresponding measured data.Finite element analysis with thermal analogy technique was utilized in the equivalent bimorph beam model to numerically reproduce the force-displacement relationship of the IPMC actuator.The results by the equivalent bimorph beam model agreed well with the force-displacement relationship acquired by the measured data.It is confirmed that the equivalent beam and equivalent bimorph beam models are practically and effectively suitable for predicting the tip displacement,blocking force and Young's modulus of IPMC actuators with different thickness and different composite of ionic polymer membrane.
基金Project(50575228) supported by the National Natural Science Foundation of ChinaProject(07JJ3089) supported by the Hunan Provincial Natural Science Foundation of China
文摘As a new ionic polymer-metal composite(IPMC) for artificial muscle,the mechanical performance parameters and the relationship between the deformation and the electrical parameters of the IPMC were studied. With the digital speckle correlation method,the constitutive relationship of the IPMC was confirmed. With non-contact photography measurement,a cantilever setup was designed to confirm the relationship between the deformation of the IPMC film and the applied voltage. The relationship curve of tip displacement of the IPMC cantilever setup vs the voltage was achieved. The results indicate that the IPMC is isotropic,its elastic modulus is 232 MPa and Poisson ratio is 0.163. The curve achieved from the test of the tip displacement of the IPMC cantilever setup shows that the tip displacement reaches the maximum when the stimulated voltage is 5 V. And the tip displacement descends largely when the frequency of the applied voltage is between 30 mHz and 100 mHz.
基金Project supported by the National Natural Science Foundation of China(Grant No.50377022)
文摘Ion-exchange polymer-metal composite (IPMC) is a new electroactive material. It has large deformation and high force weight ratio in the presence of low voltage (〈1.5 V). In this study a soft actuator known as artificial muscle based on IPMC was prepared. The IPMC actuator is composed of a perfluorinated ion-exchange membrane and platinum plated on both sides of the membrane by chemical means. Experiences and some key points are introduced in preparation of the IPMC. Electromechanical behaviors of the actuator are investigated, Factors related to the actuator performance are discussed.
文摘Ionic polymer-metal composites (IPMCs) are especially interesting electroactive polymers because they show large a deformation in the presence of a very low driving voltage (around 1 - 2 V) and several applications have recently been proposed. Normally a humid environment is required for the best operation, although some IPMCs can operate in a dry environment, after proper encapsulation or if a solid electrolyte is used in the manufacturing process. However, such solutions usually lead to increasing mechanical stiffness and to a reduction of actuation capabilities. In this study we focus on the behaviour of non-encapsulated IPMCs as actuators in dry environments, in order to obtain relevant information for design tasks linked to the development of active devices based on this kind of smart material. The non-linear response obtained in the characterisation tests is especially well-suited to modelling these actuators with the help of artificial neural networks (ANNs). Once trained with the help of characterisation data, such neural networks prove to be a precise simulation tool for describing IPMC response in dry environments.
基金financially supported by National Key R&D Program for International Cooperation(No.2021YFE0115100)the project of the National Natural Science Foundation of China(Nos.51872240,51972270 and 52172101)+4 种基金Key Research and Development Program of Shaanxi Province(No.2021ZDLGY14-08 and 2022KWZ-04)Natural Science Foundation of Shaanxi Province(2020JZ-07)the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China(2021-TS-03)the Fundamental Research Funds for the Central Universities(No.3102019JC005 and G2022KY0604)the Research Fund of the State Key Laboratory of Solid Lubrication(CAS),China(LSL-2007)。
文摘Composite solid electrolytes(CSEs)with poly(ethylene oxide)(PEO)have become fairly prevalent for fabricating high-performance solid-state lithium metal batteries due to their high Li~+solvating capability,flexible processability and low cost.However,unsatisfactory room-temperature ionic conductivity,weak interfacial compatibility and uncontrollable Li dendrite growth seriously hinder their progress.Enormous efforts have been devoted to combining PEO with ceramics either as fillers or major matrix with the rational design of two-phase architecture,spatial distribution and content,which is anticipated to hold the key to increasing ionic conductivity and resolving interfacial compatibility within CSEs and between CSEs/electrodes.Unfortunately,a comprehensive review exclusively discussing the design,preparation and application of PEO/ceramic-based CSEs is largely lacking,in spite of tremendous reviews dealing with a broad spectrum of polymers and ceramics.Consequently,this review targets recent advances in PEO/ceramicbased CSEs,starting with a brief introduction,followed by their ionic conduction mechanism,preparation methods,and then an emphasis on resolving ionic conductivity and interfacial compatibility.Afterward,their applications in solid-state lithium metal batteries with transition metal oxides and sulfur cathodes are summarized.Finally,a summary and outlook on existing challenges and future research directions are proposed.
基金supported by the National Natural Science Foundation of China(21972049,21573080)。
文摘Despite the presence of Li F components in the solid electrolyte interphase(SEI)formed on the graphite anode surface by conventional electrolyte,these Li F components primarily exist in an amorphous state,rendering them incapable of effectively inhibiting the exchange reaction between lithium ions and transition metal ions in the electrolyte.Consequently,nearly all lithium ions within the SEI film are replaced by transition metal ions,resulting in an increase in interphacial impedance and a decrease in stability.Herein,we demonstrate that the SEI film,constructed by fluoroethylene carbonate(FEC)additive rich in crystalline Li F,effectively inhibits the undesired Li^(+)/Co^(2+)ion exchange reaction,thereby suppressing the deposition of cobalt compounds and metallic cobalt.Furthermore,the deposited cobalt compounds exhibit enhanced structural stability and reduced catalytic activity with minimal impact on the interphacial stability of the graphite anode.Our findings reveal the crucial influence of SEI film composition and structure on the deposition and hazards associated with transition metal ions,providing valuable guidance for designing next-generation electrolytes.
基金the Basic Science Research Program(2018M3D1A1058744,2021R1A5A6002853,2021R1A2B5B03001615,and 2022M3J1A1085397)through the National Research Foundation of Korea(NRF)grant by the Korean Government(MSIT)provided by KISTI(KSC-2020-CRE-0301)supported by the Hyundai NGV program。
文摘Despite the enormous interest in inorganic/polymer composite solid-state electrolytes(CSEs)for solid-state batteries(SSBs),the underlying ion transport phenomena in CSEs have not yet been elucidated.Here,we address this issue by formulating a mechanistic understanding of bi-percolating ion channels formation and ion conduction across inorganic-polymer electrolyte interfaces in CSEs.A model CSE is composed of argyrodite-type Li_6PS_5Cl(LPSCl)and gel polymer electrolyte(GPE,including Li~+-glyme complex as an ion-conducting medium).The percolation threshold of the LPSCl phase in the CSE strongly depends on the elasticity of the GPE phase.Additionally,manipulating the solvation/desolvation behavior of the Li~+-glyme complex in the GPE facilitates ion conduction across the LPSCl-GPE interface.The resulting scalable CSE(area=8×6(cm×cm),thickness~40μm)can be assembled with a high-mass-loading LiNi_(0.7)Co_(0.15)Mn_(0.15)O_(2)cathode(areal-mass-loading=39 mg cm~(-2))and a graphite anode(negative(N)/positive(P)capacity ratio=1.1)in order to fabricate an SSB full cell with bi-cell configuration.Under this constrained cell condition,the SSB full cell exhibits high volumetric energy density(480 Wh L_(cell)~(-1))and stable cyclability at 25℃,far exceeding the values reported by previous CSE-based SSBs.
基金supported by the Open Project Program of the State Key Laboratory of Materials-Oriented Chemical Engineering(KL21-05)the support of the Instrumental Analysis Center,Jiangsu University of Science and Technology.
文摘The sluggish redox kinetics of polysulfides in lithium-sulfur(Li-S)batteries are a significant obstacle to their widespread adoption as energy storage devices.However,recent studies have shown that tungsten oxide(WO_(3))can facilitate the conversion kinetics of polysulfides in Li-S batteries.Herein,we fabricated host materials for sulfur using nitrogen-doped carbon nanotubes(N-CNTs)and WO_(3).We used low-cost components and simple procedures to overcome the poor electrical conductivity that is a disadvantage of metal oxides.The composites of WO_(3) and N-CNTs(WO_(3)/N-CNTs)create a stable framework structure,fast ion diffusion channels,and a 3D electron transport network during electrochemical reaction processes.As a result,the WO_(3)/N-CNT-Li2S6 cathode demonstrates high initial capacity(1162 mA·h·g^(-1) at 0.5℃),excellent rate performance(618 mA·h·g^(-1) at 5.5℃),and a low capacity decay rate(0.093%up to 600 cycles at 2℃).This work presents a novel approach for preparing tungsten oxide/carbon composite catalysts that facilitate the redox kinetics of polysulfide conversion.
基金supported by the National Natural Science Foundation of China(21704047,21801145)the Natural Science Foundation of Shandong Province(ZR2017BB078,ZR2021QE137)+1 种基金the Foundation(ZZ20190407)of State Key Laboratory of Biobased Material and Green Papermakingthe Major Scientific and Technological Innovation Projects of Shandong Province(2019JZZY020230)。
文摘Currently,polymer nanosponges have received extensive attention.However,developing new synthetic techniques for novel nanosponges remains a challenge.Furthermore,to date,composite nanosponge adsorbents based on waterborne polyurethane(WPU)andβ-cyclodextrin(β-CD)have not been reported.Herein,a novel green method,ion condensation method,was developed in this study for the preparation of polymer nanosponge adsorbents for efficient removal of dyes from wastewater.Based on the principle of charge repulsion between nanoparticles to maintain emulsion stability,waterborne polyurethane/β-cyclodextrin composite nanosponges(WPU-x,y)were prepared by coagulating the emulsions synthesized from 2,2-dimethylolpropionic acid,polypropylene glycol and hexamethylene diisocyanate as raw materials in a mixture of hydrochloric acid and anhydrous ethanol.The structure and appearance of WPU-x,y were characterized by attenuated total reflectance Fourier transform infrared spectroscopy,thermal gravimetric analyzer,scanning electron microscope and mercury intrusion porosimetry.The adsorption capacity of WPU-x,y was tested by parameters such as cross-linking degree,β-CD dosage,contact time,initial dye concentration and p H value.The study found that WPU-4,4.62 had the best adsorption effect on methylene blue(MB),the maximum removal rate was 93.42%,and the maximum adsorption capacity was 136.03 mg·g^(-1).Moreover,the Sips isotherm and pseudo-second-order-model were suitable for MB adsorption.Therefore,this study provides some perspectives for the fabrication of nanosponge adsorbents.
基金supported by the Science Foundation of the National Key Laboratory of Science and Technology on Advanced Composites in Special Environmentsthe National Natural Science Foundation of China(12002109)+1 种基金the China Postdoctoral Science Foundation(2020M670898)the Heilongjiang Postdoctoral Fund(LBH-Z20060)。
文摘Separators have been gaining increasing attention to improve the performance of lithium ion batteries(LIBs),especially for high safe and long cycle life.However,commercial polyolefin separators still face the problems of rapid capacity decay and safety issues due to the poor wettability with electrolytes and low thermal stability.Herein,a novel composite separator is proposed by introducing a surfactant of sodium dodecyl thiosulfate(SDS)into the polytetrafluoroethylene(PTFE)substrate with the binder of polyacrylic acid(PAA)through the suction filtration method.The introduction of PAA/SDS enhances the adsorption energy between PTFE substrate and electrolyte through density functional theory calculations,which improves wettability and electrolyte uptake of the separator significantly.The asachieved composite separator enables the LIBs to own high Li^(+)conductivity(0.64×10^(-3)S cm^(-1))and Li^(+)transference number(0.63),further leading to a high capacity retention of 93.50%after 500 cycles at 1 C.In addition,the uniform and smooth surface morphology of Li metal employed the composite separator after cycling indicates that the lithium dendrites can be successfully inhibited.This work indicates a promising route for the preparation of a novel composite separator for high safe LIBs.
基金The authors would like to acknowledge the financial support from National Nat-ural Science Foundation of China (U2004199)Excellent Youth Foundation of Henan Province (202300410373)+2 种基金China Postdoctoral Science Foundation (2021T140615 and 2020M672281)Natural Science Foundation of Henan Province (212300410285)Young Talent Support Project of Henan Province(2021HYTP028).
文摘Developing laminar composite solid electrolyte with ultrathin thickness and continuous conduction channels in vertical direction holds great promise for all-solid-state lithium batteries.Herein,a thin,laminar solid electrolyte is synthesized by filtrating–NH 2 functionalized metal-organic framework nanosheets and then being threaded with poly(ethylene oxide)chains induced by the hydrogen-bonding interaction from–NH_(2) groups.It is demonstrated that the threaded poly(ethylene oxide)chains lock the adjacent metal-organic framework nanosheets,giving highly enhanced structural stability(Young’s modulus,1.3 GPa)to 7.5-μm-thick laminar composite solid electrolyte.Importantly,these poly(ethylene oxide)chains with stretching structure serve as continuous conduction pathways along the chains in pores.It makes the non-conduction laminar metal-organic framework electrolyte highly conductive:3.97×10^(−5) S cm^(−1) at 25℃,which is even over 25 times higher than that of pure poly(ethylene oxide)electrolyte.The assembled lithium cell,thus,acquires superior cycling stability,initial discharge capacity(148 mAh g^(−1) at 0.5 C and 60℃),and retention(94% after 150 cycles).Besides,the pore size of nanosheet is tailored(24.5–40.9˚A)to evaluate the mechanisms of chain conformation and ion transport in confined space.It shows that the confined pore only with proper size could facilitate the stretching of poly(ethylene oxide)chains,and meanwhile inhibit their disorder degree.Specifically,the pore size of 33.8˚A shows optimized confinement effect with trans-poly(ethylene oxide)and cis-poly(ethylene oxide)conformation,which offers great significance in ion conduction.Our design of poly(ethylene oxide)-threaded architecture provides a platform and paves a way to the rational design of next-generation high-performance porous electrolytes.
基金Project supported by the National Natural Science Foundation of China (50571003)
文摘TiO2/V2O5 catalyst doped with rare earth ions was prepared by sol-gel method. Titanium tetrapropoxide and vanadium pentoxide were used as precursor of the composite catalyst and rare earth ions were used as dopant. The crystal phases, crystalline sizes, microstructure, absorption spectra of doped composite catalyst were studied by XRD, EDS, FT-IR and UV-Vis. Photoactivity of the prepared catalyst under ultraviolet irradiation were evaluated by degradation of methyl orange (MO) in aqueous solution. It is shown that the prepared catalyst is composed of anatase and futile. The rare earth ions are highly dispersed in composite catalyst. All the doped catalysts appear higher photocatalytic activity than TiO2/V2O5 catalyst and catalyst doped with Ce^4+ present the best activity to MO.
基金the Niger Delta University for the usual research allowances provided for the running of research projects
文摘Lead adsorption of zinc oxide-coated ACOR montmorillonite was investigated in batches and under reducing conditions at ambient temperature. The presence of zinc oxide coating significantly enhanced the adsorption of Pb^(2+) ions by ACOR montmorillonite. Characterization of adsorbents involved the use of X-ray diffraction, sodium saturation techniques, coulter laser analysis, scanning electron microscopy, and electron dispersive spectroscopy.Synthesis involved the trimetric process, activation of the ACOR montmorillonite and reacting of the same with zinc nitrate to produce a zinc oxide composite solid at 450 °C.The reaction mechanism indicated less than one proton coefficient, and higher mass transfer rates, when compared with bare montmorillonite. Intraparticle diffusion was higher than the value recorded for the bare montmorillonite. Reactions based on initial Pb^(2+) concentration indicated that coated montmorillonite gradually became saturated as the concentration was increased. Reactions based on solid concentration demonstrated a complex change in the capacity of adsorption over different Pb^(2+) concentrations(10–40 mg L^(-1)) and solid concentrations(2–10 g L^(-1)). The specific surface area reduction, particle size increase, mineral aggregation, and concentration gradient effect controlled the complex changes in adsorption.
基金Projects(51074185, 51274240) supported by the National Natural Science Foundation of ChinaProject supported by the Fundamental Research Funds for the Central Universities
文摘Alloy anodes were studied for pursuing Sn-based microcomposite synthesis, assembly and performance for lithium ion batteries. The self-assembled Sn-Co-C composites with nano-scaled microstructures were prepared via solution method and carbothermal technology. The morphology and physical structure were investigated with scanning electron microscope (SEM) and X-ray diffraction (XRD). The as-prepared materials were assembled to half cell coin for the purpose of discussing the galvanostatic cycling, cyclic voltammetry and rate-capability performance. Results reveal that nanoscaled CoSn 2 alloys covered with Sn and C layer by layer are wrapped by cross-linked porous carbon network to form spherical microstructure. This distinguishing feature of Sn-Co-C composites provides a possible solution to the problems of Sn particle aggregation and poor electron transport, and has strong effect on improving electrochemical performance.
基金financially supported by the National Natural Science Foundation of China (21471100, 22005199)the Shenzhen Natural Science Fundation (20200813081943001)the Natural Science Foundation of Guangdong Province,China(2021A1515010241, 2021A1515010142)
文摘Hybrid CuO-Co_(3)O_(4)nanosphere building blocks have been embedded between the layered nanosheets of reduced graphene oxides with a three dimensional(3D)hybrid architecture(CuO-Co_(3)O_(4)-RGO),which are successfully applied as enhanced anodes for lithium-ion batteries(LIBs).The CuO-Co_(3)O_(4)-RGO sandwiched nanostructures exhibit a reversible capacity of~847 mA·h·g^(-1)after 200 cycles’cycling at 100 mA·g^(-1)with a capacity retention of 79%.The CuO-Co_(3)O_(4)-RGO compounds show superior electrochemical properties than the comparative CuO-Co_(3)O_(4),Co_(3)O_(4)and CuO anodes,which may be ascribed to the following reasons:the hybridizing multicomponent can probably give the complementary advantages;the mutual benefit of uniformly distributing nanospheres across the layered RGO nanosheets can avoid the agglomeration of both the RGO nanosheets and the CuO-Co_(3)O_(4) nanospheres;the 3D storage structure as well as the graphene wrapped composite could enhance the electrical conductivity and reduce volume expansion effect associated with the discharge-charge process.
基金Project supported by the National Key R&D Program of China(No.2018YFF01014200)the National Natural Science Foundation of China(Nos.11727804,11672347,and 51732008)
文摘The ion thruster is an engine with high specific impulse for satellites and spacecrafts,which uses electric energy to boost the spacecraft.The ion optical system,also known as gate assemblies which consist of acceleration and screen grids,is the key component of the ion thruster.In this paper,the static mechanical properties of the C/C composite grids are evaluated based on the structural design.Representative volume element (RVE) is adopted to simplify the braded composite structure as a continuum material.The dynamical behavior of the 100 mm ion thruster optics in the launch environment (1000g shock-load) is numerically modeled and simulated with the half-sine pulse method.The impact response of the C/C and molybdenum gate assemblies on the stress distribution and deformation is investigated.The simulated results indicate that the magnitudes of the normal displacement of the composite grids subject to the uniformly distributed load are on the same level as molybdenum grids although the normal stiffness of the composite grids is much smaller.When subject to impact loading,the stress distribution in the C/C composite grids is similar to molybdenum grids while the stress magnitude is much smaller.This finding shows that the C/C gate assemblies outperform molybdenum grids and meet the requirement of long lifetime service in space travel.
基金funded by the National Natural Science Foundation of China(No.51902165)the Natural Science Foundation of Jiangsu Province(No.BK20170917)+2 种基金the Scientific Research Foundation for High-Level Talents of Nanjing Forestry University(No.GXL2016023)the Program of High-Level Talents in Six Industries of Jiangsu Province(No.XCL-040)the Jiangsu Specially-Appointed Professor Program。
文摘Thanks to low cost,high safety,and large energy density,aqueous zinc-ion batteries have attracted tremendous interest worldwide.However,it remains a challenge to develop high-performance cathode materials with an appropriate method that is easy to realize massive production.Herein,we use a molten salt method to synthesize nanostructured manganese oxides.The crystalline phases of the manganese oxides can be tuned by changing the amount of reduced graphene oxide added to the reactant mixture.It is found that the α-MnO_(2)/Mn_(2)O_(3) nanocomposite with the largest mass ratio of Mn_(2)O_(3) delivers the best electrochemical performances among all the products.And its rate capability and cyclability can be significantly improved by modifying the Zn anode with carbon black coating and nanocellulose binder.In this situation,the nanocomposite can deliver high discharging capacities of 322.1 and 213.6 mAh g^(-1) at 0.2 and 3 Ag^(-1),respectively.After 1000 cycles,it can retain 86.2% of the capacity at the 2 nd cycle.Thus,this nanocomposite holds great promise for practical applications.
基金Project(20873054)supported by the National Natural Science Foundation of ChinaProject(2005037700)supported by Postdoctoral Science Foundation of China+2 种基金Project(07JJ3014)supported by Hunan Provincial Natural Science Foundation of ChinaProject(07A058)supported by Scientific Research Fund of Hunan Provincial Education DepartmentProject(2004107)supported by Postdoctoral Science Foundation of Central South University
文摘SnO2-Li4Ti5O12 was prepared by sol-gel method using tin tetrachloride,lithium acetate,tetrabutylorthotitanate and aqueous ammonia as starting materials.The composite was characterized by thermogravimertric(TG)analysis and differential thermal analysis(DTA),X-ray diffractometry(XRD)and transmission electron microscopy(TEM)combined with electrochemical tests.The results show that SnO2-Li4Ti5O12 composite derived by sol-gel technique is a nanocomposite with core-shell structure, and the amorphous Li4Ti5O12 layer with 20?40 nm in thickness is coated on the surface of SnO2 particles.Electrochemical tests show that SnO2-Li4Ti5O12 composite delivers a reversible capacity of 688.7 mA·h/g at 0.1C and 93.4%of that is retained after 60 cycles at 0.2C.The amorphous Li4Ti5O12 in composite can accommodate the volume change of SnO2 electrode and prevent the small and active Sn particles from aggregating into larger and inactive Sn clusters during the cycling effectively,and enhance the cycling stability of SnO2 electrode significantly.
文摘Silicon (Si) has been considered as one of the most promising anode material for tHe next generation lithium-ion batteries (LIBs) with high energy densities, due to its high theoretical capacity, abundant availability and environmental friendliness. However. silicon materials with low intrinsic electric and ionic conductivity suffer from huge volume variation during lithiation/delithiation processes leading to the pulverization of Si and subsequently resulting in severe capacity fading of the electrodes. Coupling of Si with carbon (C) realizes a favorable combination of the two materials properties, such as high lithiation capacity of Si and excellent mechanical and conductive properties of C. making silicon/carbon composite (Si/C) ideal candidates for LIBs anodes. In this review, recent progresses of Si/C materials utilized in LIBs are summarized in terms of structural design principles, material synthesis methods, morphological characteristics and electrochemical performances by highlighting the material structures. The mechanisms behind the performance enhancement are also discussed. Moreover, other factors that affect the performance of Si/C anodes, such as prelithiation, electrolyte additives, and binders, are also discussed. We aim to present a full scope of the Si/C-based anodes, and help understand and design future structures of Si/C anodes in LIBs,