Extractive electrospray ionization source (EESI) was adapted for ion-ion reaction, which was demonstrated by using a linear quadrupole ion trap mass spectrometer for the first ion-ion reaction of biopolymers in the ...Extractive electrospray ionization source (EESI) was adapted for ion-ion reaction, which was demonstrated by using a linear quadrupole ion trap mass spectrometer for the first ion-ion reaction of biopolymers in the atmospheric pressure ambient.展开更多
We report a reconstruction method for fast-fission events in 25 MeV/u^(86)Kr +^(208)Pb reactions at the Compact Spectrometer for Heavy Ion Experiment(CSHINE). The fission fragments(FFs) are measured using three large-...We report a reconstruction method for fast-fission events in 25 MeV/u^(86)Kr +^(208)Pb reactions at the Compact Spectrometer for Heavy Ion Experiment(CSHINE). The fission fragments(FFs) are measured using three large-area parallel-plate avalanche counters, which can deliver the position and arrival timing information of the fragments. The start timing information is provided by the radio frequency of the cyclotron. Fission events were reconstructed using the velocities of the two FFs. The broadening of both the velocity distribution and azimuthal difference of the FFs decreases with the folding angle, in accordance with the picture that fast fission occurs. The anisotropic angular distribution of the fission axis also consistently reveals the dynamic features of fission events.展开更多
Porous core-shell CoMn204 microspheres of ca. 3-5μm in diameter were synthesized and served as an-ode of lithium ion battery. Results demonstrate that the as-synthesized CoMn204 materials exhibit excel-lent electroch...Porous core-shell CoMn204 microspheres of ca. 3-5μm in diameter were synthesized and served as an-ode of lithium ion battery. Results demonstrate that the as-synthesized CoMn204 materials exhibit excel-lent electrochemical properties. The CoMn204 anode can deliver a large capacity of 1070 mAh g-1 in thefirst discharge, a reversible capacity of 500 mAh g^-1 after 100 cycles with a coulombic efficiency of 98.5% at a charge-discharge current density of 200 mA g^-l, and a specific capacity of 385 mAh g^-1 at a muchhigher charge-discharge current density of 1600mA g^-1. Synchrotron X-ray absorption fine structure(XAFS) techniques were applied to investigate the conversion reaction mechanism of the CoMn204 anode.The X-ray absorption near edge structure (XANES) spectra revealed that, in the first discharge-charge cy-cle, Co and Mn in CoMn204 were reduced to metallic Co and Mn when the electrode was discharged to0.01 V, while they were oxidized respectively to CoO and MnO when the electrode was charged to 3.0V.Experiments of both XANE5 and extended X-ray absorption fine structure (EXAFS) revealed that neithervalence evolution nor phase transition of the porous core-shell CoMn204 microspheres could happen inthe discharge plateau from 0.8 to 0.6V, which demonstrates the formation of solid electrolyte interface(SEI) on the anode.展开更多
An inverse spinel-type metal oxide, magnesium-manganese-titanium oxide (Mg2Mn0.5Ti0.5O4), were prepared using the coprecipitation/thermal crystallization method. The extraction/insertion reaction with this material ...An inverse spinel-type metal oxide, magnesium-manganese-titanium oxide (Mg2Mn0.5Ti0.5O4), were prepared using the coprecipitation/thermal crystallization method. The extraction/insertion reaction with this material was investigated by X-ray, saturation capacity of exchange, pH titration, and distribution coefficient (Kd) measurement. The acid treatments of Mg2Mn0.5Ti0.5O4 caused Mg^2+ extractions of more than 81%, whereas the dissolutions of Mn^4+ and Ti^4+ were less than 10%. The experimental results proved that the acid-treated sample has a capacity of exchange 56 mg·g^-1 for Li^+ in the solution. The chemical analysis showed that the Li^+ extraction/insertion progressed mainly by ion-exchange mechanism and surface adsorption.展开更多
We discussed recent studies, within the framework of transport theories, on heavy ion reactions between charge asymmetric systems, from low up to Fermi energies. We concentrated on the analysis of ternary breakup even...We discussed recent studies, within the framework of transport theories, on heavy ion reactions between charge asymmetric systems, from low up to Fermi energies. We concentrated on the analysis of ternary breakup events of dynamical origin occurring in semi-central reactions, where the formation of excited systems in various conditions of shape, excitation energy and spin is observed. At beam energies around 20 A Me V, we showed how this fragmentation mode emerges from the combined action of surface(neck) instabilities and angular momentum effects, leading to the observation of three aligned massive fragments in the exit channel. At Fermi energies, a transition towards a prompt emission of small fragments from the neck region with larger relative velocity with respect to projectile and target remnants is observed. We also focus on isospin sensitive observables, aiming at extracting information on the density dependence of the isovector part of the nuclear effective interaction and of the nuclear symmetry energy.展开更多
The mass dependence of critical parameters for the liquid-gas phase transition and multiplicity of intermediate mass fragment in the heavy ion reaction is qualitatively explored under the framework of lattice gas mode...The mass dependence of critical parameters for the liquid-gas phase transition and multiplicity of intermediate mass fragment in the heavy ion reaction is qualitatively explored under the framework of lattice gas model.Some results are compared with experimental data.展开更多
The selected-state probabilities of collinear ion-pair formation process Na+I2→Na++I2-on Aten-Laming-Los two-State potential energy surface have been calculated by using LCAC-SW method. The results show that reaction...The selected-state probabilities of collinear ion-pair formation process Na+I2→Na++I2-on Aten-Laming-Los two-State potential energy surface have been calculated by using LCAC-SW method. The results show that reaction probabilities are oscillatory with collision energy; the threshold energy of this ioniZation reaction is 2.8 ev, which is in modest agreement with experimental result.展开更多
Within the quantum molecular dynamics (QMD) model, the dynamical octupole deformation is studied as a function of the central distance between the projectile and target in the approaching process of heavy-ion fusion...Within the quantum molecular dynamics (QMD) model, the dynamical octupole deformation is studied as a function of the central distance between the projectile and target in the approaching process of heavy-ion fusion reactions. The dependence of the maximum dynamical octupole defor- mations on tile incident energies is also investigated. The dynamical octupole deformations can be observed during the approaching process, and the maximum dynamical octupole deformations be- come more significant with decreasing incident energies. The distributions of the proton and neutron centers in the projectile and target are also investigated, respectively. In the approaching process of heavy-ion fusion reactions, the separation between proton centers for two nuclei is larger than that between neutron centers because of the strong Coulomb potential.展开更多
The interaction potential between a spherical and a deformed nucleus is calculated within the double-folding model for deformed nuclei. We solve the double folding potential numerically by using the truncated multipol...The interaction potential between a spherical and a deformed nucleus is calculated within the double-folding model for deformed nuclei. We solve the double folding potential numerically by using the truncated multipole expansion method. The shape, separation and orientation dependence of the interaction potential, fusion cross section and barrier distribution of the system ^16O+^154Sm are investigated by considering the quadrupole and hexadecapole deformations of ^154Sm. It is shown that the height and the position of the barrier depend strongly on the deformation and the orientation angles of the deformed nucleus. These are quite important quantities for heavy-ion fusion reactions, and hence produce great effects on the fusion cross section and barrier distribution.展开更多
Metal oxide hollow structures with multilevel interiors are of great interest for potential applications such as catalysis, chemical sensing, drug delivery, and energy storage. However, the controlled synthesis of mul...Metal oxide hollow structures with multilevel interiors are of great interest for potential applications such as catalysis, chemical sensing, drug delivery, and energy storage. However, the controlled synthesis of multilevel nanotubes remains a great challenge. Here we develop a facile interface-modulated approach toward the synthesis of complex metal oxide multilevel nanotubes with tunable interior structures through electrospinning followed by controlled heat treatment. This versatile strategy can be effectively applied to fabricate wire-in-tube and tube- in-tube nanotubes of various metal oxides. These multilevel nanotubes possess a large specific surface area, fast mass transport, good strain accommodation, and high packing density, which are advantageous for lithium-ion batteries (LIBs) and the oxygen reduction reaction (ORR). Specifically, shrinkable CoMn204 tube-in-tube nanotubes as a lithium-ion battery anode deliver a high discharge capacity of -565 mAh-g-1 at a high rate of 2 A.g-~, maintaining 89% of the latter after 500 cycles. Further, as an oxygen reduction reaction catalyst, these nanotubes also exhibit excellent stability with about 92% current retention after 30,000 s, which is higher than that of commercial Pt/C (81%). Therefore, this feasible method may push the rapid development of one-dimensional (1D) nanomaterials. These multifunctional nanotubes have great potential in many frontier fields.展开更多
By taking the BUU model, we simulate the superheavy element synthesis reaction. With the rotation effect being included in the BUU model, the effect of the non-centrality of the reaction ^48Ca+^238U→^286 112 is stud...By taking the BUU model, we simulate the superheavy element synthesis reaction. With the rotation effect being included in the BUU model, the effect of the non-centrality of the reaction ^48Ca+^238U→^286 112 is studied. It is shown that the promising impact parameter in the synthesis process can be released from zero to a value little smaller than the radius of the smaller nucleus involved in the reaction. Meanwhile, the compound nucleus may involve rich shape phases.展开更多
Hydroxyl release of red soil and latosol surfaces was quantitatively measuredusing a self-made constant pH automated titration instrument, to study the changes of hydroxylrelease with different added selenite amounts ...Hydroxyl release of red soil and latosol surfaces was quantitatively measuredusing a self-made constant pH automated titration instrument, to study the changes of hydroxylrelease with different added selenite amounts and pH levels, and to study the effects ofelectrolytes on hydroxyl release. Hydroxyl release increased with the selenite concentration, with arapid increase at a low selenite concentration while slowing down at a high concentration. The pHwhere maximum of hydroxyl release appeared was not constant, shifting to a lower valus withincreasing selenite concentration. Hydroxyl release decreased with increasing electrolyteconcentration, and the decrease was very rapid at a low electrolyte concentration but slow at a highelectrolyte concentration. For NaClO_4, NaCl and Na_2SO_4, hydroxyl release was in the order ofNaClO_4 > NaCl >> Na_2SO_4, and the difference was very significant. But for NaCl, KCl and CaCl_2,the order of hydroxyl release was NaCl > KCl > CaCl_2, and the difference was smaller. The amount ofhydroxyl release from Xuwen latosol was greater than that from Jinxian red soil. Hydroxyl releaseexisted in a wider range of pH with Xuwen latosol than with Jinxian red soil, due to theirdifference in soil properties. However, both soils had similar curves of hydroxyl release,indicating the common characteristics of variable charge soils.展开更多
A self-made constant pH automated titration instrument was used to study thekinetics of hydroxyl release during selenite reacting with variable charge soils. The rate ofhydroxyl release was very rapid at the first sev...A self-made constant pH automated titration instrument was used to study thekinetics of hydroxyl release during selenite reacting with variable charge soils. The rate ofhydroxyl release was very rapid at the first several minutes, then gradually slowed down, and atlast did not change any more. The experimental data was well fitted by the Langmuir kineticequation, arid with increasing selenite concentration or decreasing solution pH, the reaction lastedlonger, the maximum of hydroxyl release (x_m) increased, and the binding constant (k) decreased.The time of hydroxyl release with Xuwen latosol was much longer than that with Jinxian red soil.展开更多
The laser ablation-molecular beam(LA-MB) method is useful for studying the reactions of metal ions with molecular clusters. Reactions of magnesium plasma with methanol clusters were studied by using this method. A s...The laser ablation-molecular beam(LA-MB) method is useful for studying the reactions of metal ions with molecular clusters. Reactions of magnesium plasma with methanol clusters were studied by using this method. A specially designed reaction cell was used as a fast flow reactor operated under thermal conditions, and the reaction products were measured with a time-of-flight(TOF) mass spectrometer. Surprisingly, several series of cluster ions with complex sizes and intensity distributions were obtained when the laser ablating was applied to different parts of the molecular beam. In the front part of the molecular beam, strong Mg^+ (CH3OH)n( n = 0-5) and weak H^+ (CH3OH)n( n = 0-5 ) cluster ions were observed with relatively small cluster sizes ; in the middle part of the molecular beam, the main cluster ions were H^+ ( CH3OH)n ( n = 6-17 ) and H^+( H2O) 2 ( CH3OH)n( n = 6-17 ) with a relatively large cluster size and a weak intensity; in the back part of the molecular beam, two new series of cluster ions, MgO^+ ( H2O) ( CH3 OH)n( n = 6-10 ) and MgOCH3^+ ( CH3OH)n( n = 6-10), were obtained and accompanied by weak H^+(CH3OH)n(n = 4-7) and H^+( H2O)2 (CH3OH)n( n = 3-6). The formation mechanisms and speed characteristics of the cluster ions are discussed in this article.展开更多
Deviation between thermodynamic and experimental voltages is one of the key issues in Li-ion conversion-type electrode materials; the factor that affects this phenomenon has not been understood well in spite of its im...Deviation between thermodynamic and experimental voltages is one of the key issues in Li-ion conversion-type electrode materials; the factor that affects this phenomenon has not been understood well in spite of its importance. In this work, we combine first principles calculations and electrochemical experiments with characterization tools to probe the conversion reaction voltage of transition metal difluorides MF2(M = Fe, Ni, and Cu). We find that the conversion reaction voltage is heavily dependent on the size of the metal nanoparticles generated. The surface energy of metal nanoparticles appears to penalize the reaction energy, which results in a lower voltage compared to the thermodynamic voltage of a bulk-phase reaction. Furthermore, we develop a reversible CuF2 electrode coated with NiO. Electron energy loss spectroscopy (EELS) elemental maps demonstrate that the lithiation process mostly occurs in the area of high NiO content. This suggests that NiO can be considered a suitable artificial solid electrolyte interphase that prevents direct contact between Cu nanoparticles and the electrolyte. Thus, it alleviates Cu dissolution into the electrolyte and improves the reversibility of CuF2.展开更多
A new preparation method for a highly sinterable Y 2O 3 powder was developed, using the mixture of the powder with Al 2O 3 powder, a transparent yttrium aluminum garnet(YAG) ceramic was prepared at relatively low temp...A new preparation method for a highly sinterable Y 2O 3 powder was developed, using the mixture of the powder with Al 2O 3 powder, a transparent yttrium aluminum garnet(YAG) ceramic was prepared at relatively low temperature by a solid state reaction method. Yttrium nitrate was used as a mother salt, and aqueous ammonia was used as a precipitant reagent, the fine and dendritic precursor crystalline was prepared by adding 0.5% ammonium sulfate into the precipitation reaction system. The highly pure and low agglomerated Y 2O 3 powders were obtained by calcinating the precursor at 1 100 ℃, the primary particles are spherical and 60 nm in diameter. The mixture of Y 2O 3 and Al 2O 3 powders was calcinated, and the resulting mixture compact pressed in mold could be sintered to transparency under vacuum at 1 700 ℃. The sintered transparent YAG polycrystalline exhibits a homogeneous microstructure and its transmittance reaches 45% in the visible light region and 70% in the near infrared wavelength region.展开更多
Spinel compound LiNi0.5Mn1.5O4 with high capacity and high rate capability was synthesized by solid-state reaction. At first, MnCl2·4H2O and NiCl2·6H2O were reacted with (NH4)2C2O4·H2O to produce a prec...Spinel compound LiNi0.5Mn1.5O4 with high capacity and high rate capability was synthesized by solid-state reaction. At first, MnCl2·4H2O and NiCl2·6H2O were reacted with (NH4)2C2O4·H2O to produce a precursor via a low-temperature solid-state route, then the precursor was reacted with Li2CO3 to synthesize LiNi0.5Mn1.5O4. The effects of calcination temperature and time on the physical properties and electrochemical performance of the products were investigated. Samples were characterized by thermal gravimetric analysis(TGA), scanning electron microscopy(SEM), X-ray diffractometry(XRD), charge-discharge tests and cyclic voltammetry measurements. Scanning electron microscopy(SEM) image shows that as calcination temperature and time increase, the crystallinity of the samples is improved, and their grain sizes are obviously increased. It is found that LiNi0.5Mn1.5O4 calcined at 800 ℃ for 6 h exhibits a typical cubic spinel structure with a space group of Fd3m. Electrochemical tests demonstrate that the sample obtained possesses high capacity and excellent rate capability. When being discharged at a rate as high as 5C after 30 cycles, the as-prepared LiNi0.5Mn1.5O4 powders can still deliver a capacity of 101 mA·h/g, which shows to be a potential cathode material for high power batteries.展开更多
The production mechanism of heavy neutronrich nuclei is investigated by using the multinucleon transfer reactions of ^(136;148)Xe+^(208)Pb and ^(238)U+^(208)Pb in the framework of a dinuclear system model. The evapora...The production mechanism of heavy neutronrich nuclei is investigated by using the multinucleon transfer reactions of ^(136;148)Xe+^(208)Pb and ^(238)U+^(208)Pb in the framework of a dinuclear system model. The evaporation residual cross sections of target-like fragments are studied with the reaction system ^(148)Xe+^(208)Pb at near barrier energies. The results show that the final isotopic production cross sections in the neutron-deficient side are very sensitive to incident energy while it is not sensitive in the neutron-rich side. Comparing the isotopic production cross sections for the reactions of ^(208)Pb bombarded with stable and radioactive projectiles, we find that neutron-rich radioactive beams can significantly increase the production cross sections of heavy neutron-rich nuclei.展开更多
The research results concerning continuous removal of phosphate (V) ions from solutions containing 1.0 or 0.20 mass % of phosphate (V) ions and 0.2 or 0.5 mg/kg of copper (II) ions using magnesium and ammonium ions ad...The research results concerning continuous removal of phosphate (V) ions from solutions containing 1.0 or 0.20 mass % of phosphate (V) ions and 0.2 or 0.5 mg/kg of copper (II) ions using magnesium and ammonium ions addition are presented. Continuous reaction crystallization of struvite MgNH4PO4 × 6H2O ran both under stoichiometric conditions and at 20% excess of magnesium ions (pH 9, t 900 s). It was concluded, that presence of copper (II) ions in a process system influenced product quality moderately advantageously. Mean size of struvite crystals enlarged by ca. 6% only. Lower concentration of phosphate (V) ions and excess of magnesium ions caused, that products of ca. 9% - 13% larger crystal mean size (up to ca.40mm) were removed from the crystallizer. Presence of struvite crystals and copper (II) hydroxide were detected analytically in the products (Cu in a product varied from 6 to 90 mg/kg). Presence of copper (II) ions favored crystallization of struvite in the form of tubular crystals.展开更多
The activities of protactinium were produced by the multi-nucleontransfer reactions in bombardment of the natural uranium with 60 MeV/nucleon 1sOions. A simple, relatively fast radiochemical procedure was used for ext...The activities of protactinium were produced by the multi-nucleontransfer reactions in bombardment of the natural uranium with 60 MeV/nucleon 1sOions. A simple, relatively fast radiochemical procedure was used for extraction sep-aration of protactinium from the uranium and a variety of reaction products using1-phenyl-3-methyl-4-benzoyl-5-pyrazolone and tri-iso-octylamine as extractants. Theγ ray spectrum of the separated protactinium fractions showed that the protactiniumcould be separated from all of the main impurity elements. The decontaminationfactors of the uranium and the main reaction products produced in the reaction aregiven.展开更多
文摘Extractive electrospray ionization source (EESI) was adapted for ion-ion reaction, which was demonstrated by using a linear quadrupole ion trap mass spectrometer for the first ion-ion reaction of biopolymers in the atmospheric pressure ambient.
基金supported by the National Natural Science Foundation of China(Nos.11875174,11961131010,and 11961141004)the Polish National Science Center(No.2018/30/Q/ST2/00185)。
文摘We report a reconstruction method for fast-fission events in 25 MeV/u^(86)Kr +^(208)Pb reactions at the Compact Spectrometer for Heavy Ion Experiment(CSHINE). The fission fragments(FFs) are measured using three large-area parallel-plate avalanche counters, which can deliver the position and arrival timing information of the fragments. The start timing information is provided by the radio frequency of the cyclotron. Fission events were reconstructed using the velocities of the two FFs. The broadening of both the velocity distribution and azimuthal difference of the FFs decreases with the folding angle, in accordance with the picture that fast fission occurs. The anisotropic angular distribution of the fission axis also consistently reveals the dynamic features of fission events.
基金financially supported by NSFC (Grant Nos.21621091,21373008)the National Key Research and Development Program of China (2016YFB0100202)
文摘Porous core-shell CoMn204 microspheres of ca. 3-5μm in diameter were synthesized and served as an-ode of lithium ion battery. Results demonstrate that the as-synthesized CoMn204 materials exhibit excel-lent electrochemical properties. The CoMn204 anode can deliver a large capacity of 1070 mAh g-1 in thefirst discharge, a reversible capacity of 500 mAh g^-1 after 100 cycles with a coulombic efficiency of 98.5% at a charge-discharge current density of 200 mA g^-l, and a specific capacity of 385 mAh g^-1 at a muchhigher charge-discharge current density of 1600mA g^-1. Synchrotron X-ray absorption fine structure(XAFS) techniques were applied to investigate the conversion reaction mechanism of the CoMn204 anode.The X-ray absorption near edge structure (XANES) spectra revealed that, in the first discharge-charge cy-cle, Co and Mn in CoMn204 were reduced to metallic Co and Mn when the electrode was discharged to0.01 V, while they were oxidized respectively to CoO and MnO when the electrode was charged to 3.0V.Experiments of both XANE5 and extended X-ray absorption fine structure (EXAFS) revealed that neithervalence evolution nor phase transition of the porous core-shell CoMn204 microspheres could happen inthe discharge plateau from 0.8 to 0.6V, which demonstrates the formation of solid electrolyte interface(SEI) on the anode.
文摘An inverse spinel-type metal oxide, magnesium-manganese-titanium oxide (Mg2Mn0.5Ti0.5O4), were prepared using the coprecipitation/thermal crystallization method. The extraction/insertion reaction with this material was investigated by X-ray, saturation capacity of exchange, pH titration, and distribution coefficient (Kd) measurement. The acid treatments of Mg2Mn0.5Ti0.5O4 caused Mg^2+ extractions of more than 81%, whereas the dissolutions of Mn^4+ and Ti^4+ were less than 10%. The experimental results proved that the acid-treated sample has a capacity of exchange 56 mg·g^-1 for Li^+ in the solution. The chemical analysis showed that the Li^+ extraction/insertion progressed mainly by ion-exchange mechanism and surface adsorption.
基金Supported by a grant of the Romanian National Authority for Scientific Research,CNCS-UEFISCDI(No.PN-II-ID-PCE-2011-3-0972)
文摘We discussed recent studies, within the framework of transport theories, on heavy ion reactions between charge asymmetric systems, from low up to Fermi energies. We concentrated on the analysis of ternary breakup events of dynamical origin occurring in semi-central reactions, where the formation of excited systems in various conditions of shape, excitation energy and spin is observed. At beam energies around 20 A Me V, we showed how this fragmentation mode emerges from the combined action of surface(neck) instabilities and angular momentum effects, leading to the observation of three aligned massive fragments in the exit channel. At Fermi energies, a transition towards a prompt emission of small fragments from the neck region with larger relative velocity with respect to projectile and target remnants is observed. We also focus on isospin sensitive observables, aiming at extracting information on the density dependence of the isovector part of the nuclear effective interaction and of the nuclear symmetry energy.
基金Supported by the National Natural Science Foundation for Distinguished Young Scholar under Grant No.19725521 National Natural Science Foundation under Grant No.19705021Science and Technology Development Foundation of shanghai under Grant No.97QA
文摘The mass dependence of critical parameters for the liquid-gas phase transition and multiplicity of intermediate mass fragment in the heavy ion reaction is qualitatively explored under the framework of lattice gas model.Some results are compared with experimental data.
文摘The selected-state probabilities of collinear ion-pair formation process Na+I2→Na++I2-on Aten-Laming-Los two-State potential energy surface have been calculated by using LCAC-SW method. The results show that reaction probabilities are oscillatory with collision energy; the threshold energy of this ioniZation reaction is 2.8 ev, which is in modest agreement with experimental result.
基金The work was supported by the Na- tional Natural Science Foundation of China (Crant Nos. 11475115, 10975100, 11275098, 10979066, and 11120101005), the National Basic Research Program of Ministry of Science and Technology of China (Grant No. 2007CB815000), the Knowledge Innovation Project of CAS (Crant Nos. KJCX2-EW-N01 and KJCX2-YW- N32). Part of the numerical results is obtained on the ScCrid of Supercomputing Center, CNIC of CAS.
文摘Within the quantum molecular dynamics (QMD) model, the dynamical octupole deformation is studied as a function of the central distance between the projectile and target in the approaching process of heavy-ion fusion reactions. The dependence of the maximum dynamical octupole defor- mations on tile incident energies is also investigated. The dynamical octupole deformations can be observed during the approaching process, and the maximum dynamical octupole deformations be- come more significant with decreasing incident energies. The distributions of the proton and neutron centers in the projectile and target are also investigated, respectively. In the approaching process of heavy-ion fusion reactions, the separation between proton centers for two nuclei is larger than that between neutron centers because of the strong Coulomb potential.
基金National Natural Science Foundation of China (60572177)
文摘The interaction potential between a spherical and a deformed nucleus is calculated within the double-folding model for deformed nuclei. We solve the double folding potential numerically by using the truncated multipole expansion method. The shape, separation and orientation dependence of the interaction potential, fusion cross section and barrier distribution of the system ^16O+^154Sm are investigated by considering the quadrupole and hexadecapole deformations of ^154Sm. It is shown that the height and the position of the barrier depend strongly on the deformation and the orientation angles of the deformed nucleus. These are quite important quantities for heavy-ion fusion reactions, and hence produce great effects on the fusion cross section and barrier distribution.
基金This work was supported by the National Basic Research Program of China (Nos. 2013CB934103 and 2012CB933003), the National Natural Science Foundation of China (Nos. 51521001 and 51272197), the National Science Fund for Distinguished Young Scholars (No. 51425204), the Hubei Province Natural Science Fund for Distinguished Young Scholars (No. 2014CFA035), and the Fundamental Research Funds for the Central Universities (Nos. 2015-III-032, 2016-YB-004, and 2015-KF-3). We thank Prof. D~ Y. Zhao of Fudan University and Prof. J. Liu of Pacific Northwest National Laboratory for useful discussions and assistance with the manuscript.
文摘Metal oxide hollow structures with multilevel interiors are of great interest for potential applications such as catalysis, chemical sensing, drug delivery, and energy storage. However, the controlled synthesis of multilevel nanotubes remains a great challenge. Here we develop a facile interface-modulated approach toward the synthesis of complex metal oxide multilevel nanotubes with tunable interior structures through electrospinning followed by controlled heat treatment. This versatile strategy can be effectively applied to fabricate wire-in-tube and tube- in-tube nanotubes of various metal oxides. These multilevel nanotubes possess a large specific surface area, fast mass transport, good strain accommodation, and high packing density, which are advantageous for lithium-ion batteries (LIBs) and the oxygen reduction reaction (ORR). Specifically, shrinkable CoMn204 tube-in-tube nanotubes as a lithium-ion battery anode deliver a high discharge capacity of -565 mAh-g-1 at a high rate of 2 A.g-~, maintaining 89% of the latter after 500 cycles. Further, as an oxygen reduction reaction catalyst, these nanotubes also exhibit excellent stability with about 92% current retention after 30,000 s, which is higher than that of commercial Pt/C (81%). Therefore, this feasible method may push the rapid development of one-dimensional (1D) nanomaterials. These multifunctional nanotubes have great potential in many frontier fields.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10425521, 10075002, and 10135030, the Major State Basic Research Development Programme under Grant No G2000077400, and Doctoral Program Foundation of the Ministry of Education of China under Grant No 20040001010, the Foundation for University Key Teacher by the Ministry of Education of China.
文摘By taking the BUU model, we simulate the superheavy element synthesis reaction. With the rotation effect being included in the BUU model, the effect of the non-centrality of the reaction ^48Ca+^238U→^286 112 is studied. It is shown that the promising impact parameter in the synthesis process can be released from zero to a value little smaller than the radius of the smaller nucleus involved in the reaction. Meanwhile, the compound nucleus may involve rich shape phases.
基金Project supported by the National Natural Science Foundation of China(Nos.49971046 and 49831005).
文摘Hydroxyl release of red soil and latosol surfaces was quantitatively measuredusing a self-made constant pH automated titration instrument, to study the changes of hydroxylrelease with different added selenite amounts and pH levels, and to study the effects ofelectrolytes on hydroxyl release. Hydroxyl release increased with the selenite concentration, with arapid increase at a low selenite concentration while slowing down at a high concentration. The pHwhere maximum of hydroxyl release appeared was not constant, shifting to a lower valus withincreasing selenite concentration. Hydroxyl release decreased with increasing electrolyteconcentration, and the decrease was very rapid at a low electrolyte concentration but slow at a highelectrolyte concentration. For NaClO_4, NaCl and Na_2SO_4, hydroxyl release was in the order ofNaClO_4 > NaCl >> Na_2SO_4, and the difference was very significant. But for NaCl, KCl and CaCl_2,the order of hydroxyl release was NaCl > KCl > CaCl_2, and the difference was smaller. The amount ofhydroxyl release from Xuwen latosol was greater than that from Jinxian red soil. Hydroxyl releaseexisted in a wider range of pH with Xuwen latosol than with Jinxian red soil, due to theirdifference in soil properties. However, both soils had similar curves of hydroxyl release,indicating the common characteristics of variable charge soils.
基金Project supported by the National Natural Science Foundation of China (Nos. 49971046 and 49831005).
文摘A self-made constant pH automated titration instrument was used to study thekinetics of hydroxyl release during selenite reacting with variable charge soils. The rate ofhydroxyl release was very rapid at the first several minutes, then gradually slowed down, and atlast did not change any more. The experimental data was well fitted by the Langmuir kineticequation, arid with increasing selenite concentration or decreasing solution pH, the reaction lastedlonger, the maximum of hydroxyl release (x_m) increased, and the binding constant (k) decreased.The time of hydroxyl release with Xuwen latosol was much longer than that with Jinxian red soil.
基金Supported by the Doctoral Startup Foundation from Qufu Normal University.
文摘The laser ablation-molecular beam(LA-MB) method is useful for studying the reactions of metal ions with molecular clusters. Reactions of magnesium plasma with methanol clusters were studied by using this method. A specially designed reaction cell was used as a fast flow reactor operated under thermal conditions, and the reaction products were measured with a time-of-flight(TOF) mass spectrometer. Surprisingly, several series of cluster ions with complex sizes and intensity distributions were obtained when the laser ablating was applied to different parts of the molecular beam. In the front part of the molecular beam, strong Mg^+ (CH3OH)n( n = 0-5) and weak H^+ (CH3OH)n( n = 0-5 ) cluster ions were observed with relatively small cluster sizes ; in the middle part of the molecular beam, the main cluster ions were H^+ ( CH3OH)n ( n = 6-17 ) and H^+( H2O) 2 ( CH3OH)n( n = 6-17 ) with a relatively large cluster size and a weak intensity; in the back part of the molecular beam, two new series of cluster ions, MgO^+ ( H2O) ( CH3 OH)n( n = 6-10 ) and MgOCH3^+ ( CH3OH)n( n = 6-10), were obtained and accompanied by weak H^+(CH3OH)n(n = 4-7) and H^+( H2O)2 (CH3OH)n( n = 3-6). The formation mechanisms and speed characteristics of the cluster ions are discussed in this article.
文摘Deviation between thermodynamic and experimental voltages is one of the key issues in Li-ion conversion-type electrode materials; the factor that affects this phenomenon has not been understood well in spite of its importance. In this work, we combine first principles calculations and electrochemical experiments with characterization tools to probe the conversion reaction voltage of transition metal difluorides MF2(M = Fe, Ni, and Cu). We find that the conversion reaction voltage is heavily dependent on the size of the metal nanoparticles generated. The surface energy of metal nanoparticles appears to penalize the reaction energy, which results in a lower voltage compared to the thermodynamic voltage of a bulk-phase reaction. Furthermore, we develop a reversible CuF2 electrode coated with NiO. Electron energy loss spectroscopy (EELS) elemental maps demonstrate that the lithiation process mostly occurs in the area of high NiO content. This suggests that NiO can be considered a suitable artificial solid electrolyte interphase that prevents direct contact between Cu nanoparticles and the electrolyte. Thus, it alleviates Cu dissolution into the electrolyte and improves the reversibility of CuF2.
文摘A new preparation method for a highly sinterable Y 2O 3 powder was developed, using the mixture of the powder with Al 2O 3 powder, a transparent yttrium aluminum garnet(YAG) ceramic was prepared at relatively low temperature by a solid state reaction method. Yttrium nitrate was used as a mother salt, and aqueous ammonia was used as a precipitant reagent, the fine and dendritic precursor crystalline was prepared by adding 0.5% ammonium sulfate into the precipitation reaction system. The highly pure and low agglomerated Y 2O 3 powders were obtained by calcinating the precursor at 1 100 ℃, the primary particles are spherical and 60 nm in diameter. The mixture of Y 2O 3 and Al 2O 3 powders was calcinated, and the resulting mixture compact pressed in mold could be sintered to transparency under vacuum at 1 700 ℃. The sintered transparent YAG polycrystalline exhibits a homogeneous microstructure and its transmittance reaches 45% in the visible light region and 70% in the near infrared wavelength region.
基金Project(2007CB613607) supported by the National Basic Research Program of China
文摘Spinel compound LiNi0.5Mn1.5O4 with high capacity and high rate capability was synthesized by solid-state reaction. At first, MnCl2·4H2O and NiCl2·6H2O were reacted with (NH4)2C2O4·H2O to produce a precursor via a low-temperature solid-state route, then the precursor was reacted with Li2CO3 to synthesize LiNi0.5Mn1.5O4. The effects of calcination temperature and time on the physical properties and electrochemical performance of the products were investigated. Samples were characterized by thermal gravimetric analysis(TGA), scanning electron microscopy(SEM), X-ray diffractometry(XRD), charge-discharge tests and cyclic voltammetry measurements. Scanning electron microscopy(SEM) image shows that as calcination temperature and time increase, the crystallinity of the samples is improved, and their grain sizes are obviously increased. It is found that LiNi0.5Mn1.5O4 calcined at 800 ℃ for 6 h exhibits a typical cubic spinel structure with a space group of Fd3m. Electrochemical tests demonstrate that the sample obtained possesses high capacity and excellent rate capability. When being discharged at a rate as high as 5C after 30 cycles, the as-prepared LiNi0.5Mn1.5O4 powders can still deliver a capacity of 101 mA·h/g, which shows to be a potential cathode material for high power batteries.
基金supported by the National Natural Science Foundation of China under Grants Nos.11635003,11025524 and 11161130520the National Basic Research Program of China under Grant No.2010CB832903+1 种基金the European Commission’s 7th Framework Programme(Fp7-PEOPLE-2010-IRSES)under Grant Agreement Project No.269131the Project funded by China Postdoctoral Science Foundation(Grant No.2016M600956)
文摘The production mechanism of heavy neutronrich nuclei is investigated by using the multinucleon transfer reactions of ^(136;148)Xe+^(208)Pb and ^(238)U+^(208)Pb in the framework of a dinuclear system model. The evaporation residual cross sections of target-like fragments are studied with the reaction system ^(148)Xe+^(208)Pb at near barrier energies. The results show that the final isotopic production cross sections in the neutron-deficient side are very sensitive to incident energy while it is not sensitive in the neutron-rich side. Comparing the isotopic production cross sections for the reactions of ^(208)Pb bombarded with stable and radioactive projectiles, we find that neutron-rich radioactive beams can significantly increase the production cross sections of heavy neutron-rich nuclei.
文摘The research results concerning continuous removal of phosphate (V) ions from solutions containing 1.0 or 0.20 mass % of phosphate (V) ions and 0.2 or 0.5 mg/kg of copper (II) ions using magnesium and ammonium ions addition are presented. Continuous reaction crystallization of struvite MgNH4PO4 × 6H2O ran both under stoichiometric conditions and at 20% excess of magnesium ions (pH 9, t 900 s). It was concluded, that presence of copper (II) ions in a process system influenced product quality moderately advantageously. Mean size of struvite crystals enlarged by ca. 6% only. Lower concentration of phosphate (V) ions and excess of magnesium ions caused, that products of ca. 9% - 13% larger crystal mean size (up to ca.40mm) were removed from the crystallizer. Presence of struvite crystals and copper (II) hydroxide were detected analytically in the products (Cu in a product varied from 6 to 90 mg/kg). Presence of copper (II) ions favored crystallization of struvite in the form of tubular crystals.
基金Supported by the National Natural Science Foundation of China(10075063),and by the Chinese Academy of Sciences(TK95T-03)
文摘The activities of protactinium were produced by the multi-nucleontransfer reactions in bombardment of the natural uranium with 60 MeV/nucleon 1sOions. A simple, relatively fast radiochemical procedure was used for extraction sep-aration of protactinium from the uranium and a variety of reaction products using1-phenyl-3-methyl-4-benzoyl-5-pyrazolone and tri-iso-octylamine as extractants. Theγ ray spectrum of the separated protactinium fractions showed that the protactiniumcould be separated from all of the main impurity elements. The decontaminationfactors of the uranium and the main reaction products produced in the reaction aregiven.