This paper describes the preparation of a membrane of polyacrylonitrile(PAN)and its corresponding membrane coated with polyaniline(PANI)for the adsorption of heavy metal ions.Scanning electron microscopy micrographs r...This paper describes the preparation of a membrane of polyacrylonitrile(PAN)and its corresponding membrane coated with polyaniline(PANI)for the adsorption of heavy metal ions.Scanning electron microscopy micrographs revealed that all the membranes exhibited nanofibrous morphology.The prepared membranes were characterized by Fourier transform infrared spectroscopy(FTIR).The prepared membranes were used as an adsorbent for hazardous heavy metal ions Pb^(2+) and Cr_(2)O^(2-)_(7).The adsorption capacity and the removal efficiency of the membranes were examined as function of the initial adsorbate concentration and pH of the medium.Coated membranes with PANI showed better adsorption performance and their direct current(DC)conductivities were correlated to heavy metal ion concentrations.Adsorption isotherms were also performed,and the adsorption process was tested according to the Langmuir and Freundlich models.The regeneration and reuse of the prepared membranes to re-adsorb heavy metal ions were also investigated.The enhancement in adsorption performance and reusability of PANI-coated membranes in comparison with non-coated ones is fully discussed.The results show that the maximum adsorption capacities of lead and chromate ions on the PANI-coated membranes are 290.12 and 1202.53 mg/g,respectively.展开更多
Due to the environmental policies and economic reasons,the water used in some flotation operations of complex sulfide ores is recirculated,causing the ion concentration of some species to increase over time,affecting ...Due to the environmental policies and economic reasons,the water used in some flotation operations of complex sulfide ores is recirculated,causing the ion concentration of some species to increase over time,affecting the flotation of the minerals of interest.In this work,an experimental and thermodynamic analysis of the synthetic solutions was presented with a high content of calcium and sulfate ions.The study focused on evaluating the use of two aluminum compounds for the precipitation of Ca^(2+)and SO_(4)^(2−)in the form of ettringite.The amorphous aluminum hydroxide was found to be more efficient than the crystalline one,giving rise to 83%calcium and 91%sulfate removal.The XRD analysis of the solids showed the main reaction product of ettringite,accompanied by small amounts of calcite,due to the absorption of atmospheric carbon dioxide.The final solution after the chemical treatment showed residual calcium and sulfate concentrations below 200 mg/L.Finally,the kinetics of calcium removal appeared to correspond to a second order reaction with respect to calcium concentration,with an apparent activation energy of 53.48 kJ/mol,which may suggest that the ettringite precipitation process is governed by the chemical reaction.展开更多
The presence of silver ions(Ag(I))in wastewater has a detrimental effect on living organisms.Removal of soluble silver,especially at low concentrations,is challenging.This paper presents the use ofβ-MnO2 particles as...The presence of silver ions(Ag(I))in wastewater has a detrimental effect on living organisms.Removal of soluble silver,especially at low concentrations,is challenging.This paper presents the use ofβ-MnO2 particles as a photocatalyst to remove Ag(I)ions selectively from aqueous solution at various pH levels.Inductively coupled plasma mass spectrometry(ICP-MS),X-ray diffraction(XRD),field emission electron microscope(FESEM),transmission electron microscopy(TEM),and X-ray photoelectron microscopy(XPS)were employed to determine the removal efficiency and to characterize the deposition of silver onto the surface ofβ-MnO2 particles.The optimum pH for the removal of Ag(I)ions was at pH 4 with 99%removal efficiency under 1 h of visible light irradiation.This phenomenon can be attributed to the electrostatic attraction betweenβ-MnO2 particles and Ag(I)ions as well as the suppression of electron–hole recombination in the presence of H+ions.展开更多
A 2-dimensional multicomponent ion transport model based on Nernst-Planck(NP)equation and electroneutrality assumption is developed for an electrodialysis(ED)cell operated in the ohmic regime.The flow in channels are ...A 2-dimensional multicomponent ion transport model based on Nernst-Planck(NP)equation and electroneutrality assumption is developed for an electrodialysis(ED)cell operated in the ohmic regime.The flow in channels are assumed incompressible,isothermal,and laminar.Donnan equilibrium and flux continuity are considered at ionexchange membrane(IEM)-solution interfaces.To account for tortuosity effects inside membranes,effective ionic diffusion coefficients are calculated using membranes water volume fractions.The developed multicomponent model is used to elucidate the effects of feed solution properties,cell properties,system hydrodynamics,operational conditions,and membrane properties on selective divalent ion removal in the cell.The results indicate that the selective removal of divalent ions improves with decreasing the cell length,imposed potential,and ionic strength of feed water.Enhanced mixing in spacer-filled cell also promotes selective divalent ion removal.Higher concentrations of fixed charges on the membranes results in greater selectivity toward divalent ions at short cell length and low imposed potentials.With equal concentrations of fixed charges,membranes with high water content are less favorable for selective divalent ion removal.The developed framework enables the optimum selection of cell design,IEMs,spacer design,and operational conditions to selectively remove ions from multicomponent solutions.展开更多
Single particle-inductively coupled plasma mass spectrometry (SP-ICP-MS) is a powerful tool for size-characterization of metal-containing nanoparticles (MCNs) at environmentally relevant concentrations,however,coexist...Single particle-inductively coupled plasma mass spectrometry (SP-ICP-MS) is a powerful tool for size-characterization of metal-containing nanoparticles (MCNs) at environmentally relevant concentrations,however,coexisting dissolved metal ions greatly interfere with the accuracy of particle size analysis.The purpose of this study is to develop an online technique that couples hollow fiber ultrafiltration (HFUF) with SP-ICP-MS to improve the accuracy and size detection limit of MCNs by removing metal ions from suspensions of MCNs.Through systematic optimization of conditions including the type and concentration of surfactant and complexing agent,carrier pH,and ion cleaning time,HFUF completely removes metal ions but retains the MCNs in suspension.The optimal conditions include using a mixture of 0.05 vol.%FL-70 and 0.5 mmol/L Na2S2O_(3)(pH=8.0) as the carrier and 4 min as the ion cleaning time.At these conditions,HFUF-SP-ICP-MS accurately determines the sizes of MCNs,and the results agree with the size distribution determined by transmission electron microscopy,even when metal ions also are present in the sample.In addition,reducing the ionic background through HFUF also lowers the particle size detection limit with SP-ICP-MS (e.g.,from 28.3 to 14.2 nm for gold nanoparticles).This size-based ion-removal principle provided by HFUF is suitable for both cations (e.g.,Ag+) and anions (e.g.,AuCl_(4)^(-)) and thus has good versatility compared to ion exchange purification and promising prospects for the removal of salts and macromolecules before single particle analysis.展开更多
Agricultural waste straw is the renewable resource with the highest annual yield in the world.In value-added applications of agricultural waste,dicarboxyl cellulose nanocrystals(DCCs)are prepared from rice,wheat,and c...Agricultural waste straw is the renewable resource with the highest annual yield in the world.In value-added applications of agricultural waste,dicarboxyl cellulose nanocrystals(DCCs)are prepared from rice,wheat,and corn straw by sequential periodate-chlorite oxidation.In this study,DCCs from rice,wheat,and corn straw were characterized by transmission electron microscopy(TEM),Fourier transform infrared spectrometer,X-ray diffractometer(XRD),and thermal gravimetric analysis(TGA).The carboxyl content of the DCCs was also investigated.XRD results show that the crystallinity index decreased after sequential periodate-chlorite oxidation;however,the cellulose I structure was maintained.TEM results show that rod-shaped DCCs with an average length and width of 287.0 nm and 9.9 nm,respectively,were successfully prepared by sequential periodate-chlorite oxidation.The carboxyl content of the DCCs was around 3.9 mmol/g,and not affected by the type of straw.Experiments to study the removal of copper ions in aqueous medium were performed with the prepared DCCs.The adsorption capacities of copper ions were 131,162,and 144 mg/g for DCCs prepared from rice,wheat,and corn straws,respectively.The results show that DCCs prepared from rice,wheat,and corn straws by sequential periodatechlorite oxidation have potential for the removal of copper ions from aqueous medium.展开更多
The water crisis is an increasingly severe global problem that may be reduced by reusing wastewater after suitable treatment methods. Nowadays, biosorption is one of the main parts of environmental technology which co...The water crisis is an increasingly severe global problem that may be reduced by reusing wastewater after suitable treatment methods. Nowadays, biosorption is one of the main parts of environmental technology which could adsorb heavy metals. This paper describes the adsorption of Copper(II) ions from aqueous solution using a mixture of corn stalk and tomato waste which were oxidized with nitric acid. Kinetic and isotherm studies were carried out by studying the effects of parameters such as concentration dosage, time and pH. It was found that the maximum sorption capacity of the mixture of modified corn stalk and modified tomato waste (q<sub>m</sub> = 25 mg/g) was higher than the modified corn stalk (q<sub>m</sub> = 20.8 mg/g). Analysis indicated that pseudo-second-order kinetics controlled the adsorption rate and it has been proposed to correlate the experimental data well.展开更多
This work reports synthesis and characterization of heterocyclic functionalized polymers, poly(triazole-etherimidazole)s(PTAEI), from a dialkyne-terminated compound, 3-(4,5-bis(4-(propargyloxy)phenyl)-1H-imid...This work reports synthesis and characterization of heterocyclic functionalized polymers, poly(triazole-etherimidazole)s(PTAEI), from a dialkyne-terminated compound, 3-(4,5-bis(4-(propargyloxy)phenyl)-1H-imidazol-2-yl)-9-ethyl-9H-carbazole, by using click reaction. PTAEIs were characterized and their properties such as solubility, thermal, mechanical, photophysical and metal ions adsorption were investigated. These polymers had weight average molar masses(Mw) in the range of 19100-26700 g/mol, exhibited excellent solubility in polar aprotic solvents and formed low-colored flexible thin films by solution casting method. They exhibited good thermal stability with glass transition temperatures(Tg) between 160 °C and 211 °C and 10% weight loss temperatures(T10%) in the range of 308-426 °C. Nanocomposites of PTAEIs with epoxide-terminated Fe3O4 showed that strong interfacial interaction between inorganic particles and the polymer matrix contributed to the enhanced thermal and mechanical properties. The photoluminescence intensity of the PTAEIs increased and the spectra red shifted with increasing Fe3O4 content. The PTAEIs and nanocomposites were tested for their extraction capability of metal ions from aqueous solutions either individually or in the mixture.展开更多
Chemical precipitation is a widely applied approach for a liquid fraction of digestate(LFD)of agricultural waste but its large-scale application requires low-cost and efficient precipitating agents and novel process d...Chemical precipitation is a widely applied approach for a liquid fraction of digestate(LFD)of agricultural waste but its large-scale application requires low-cost and efficient precipitating agents and novel process design.This study evaluated novel approach for the efficient removal of contaminants from the LFD using fly ash-based chemical precipitation,followed by filtration and CO_(2) mineralization.The technical feasibility of this approach was evaluated using pH and electrical conductivity(EC),and removal efficiencies of total phosphorus(TP),chemical oxygen demand(COD)and heavy metals during the treatment.The fly ash used in this study showed a promising performance as a chemical precipitation agent for COD and TP removal from the treated LFD involving complex effects of precipitation and adsorption.CO_(2) bubbling after fly ash-based chemical precipitation provided further COD and TP removal by carbonation reactions between CO_(2) and the excessive alkaline minerals in fly ash.Although addition of fly ash to untreated LFD increased pH from 8.3 to 12.9 and EC from 7.01 to 13.7 mS·cm^(−1),CO_(2) bubbling helped neutralize the treated LFD and reduce the EC,and concentrations of toxic ions by carbonation reactions.The fly ash-based chemical precipitation and CO_(2) mineralization had>93%COD and>98%TP removal efficiencies,and resulted in an EC of<2 mS·cm^(−1) and a neutral pH in the treated LFD,as well as the high purity calcite product.展开更多
The deep removal of Al, Fe(Ⅱ/Ⅲ), Ca, Zr, Ti and Si from scandium chloride solution was carried out by using 732-type strong acid cation exchange resin. The effects of pH value, contact time and complexing agents(...The deep removal of Al, Fe(Ⅱ/Ⅲ), Ca, Zr, Ti and Si from scandium chloride solution was carried out by using 732-type strong acid cation exchange resin. The effects of pH value, contact time and complexing agents(EDTA) on the purification process are investigated. The results indicate that the 732-type resin have a good scandium selectivity and the adsorption order is Sc 〉 Fe(Ⅲ)〉Al 〉 Ca 〉 Zr 〉 Ti 〉 Si in the pH range of 1-3. The separation of Sc and Zr, Si, Ti can be directly carried out because the resin have a good adsorption effect on Sc, AI and Fe(Ⅲ) but poor adsorption effect on Zr, Si and Ti under the condition of pH = 2.5 and contact time 180 min. The Fe(Ⅱ), Ca and Al are selectively adsorbed on the resin by adding reducing agent ascorbic acid and EDTA into the solution for reducing Fe(Ⅲ) to Fe(Ⅱ) and complexing Sc.By using two-step ion exchange adsorption separation method, the removal rates of Fe(Ⅲ), Ti, Al, Ca, Zr and Si are 95.5%,99.8%,100%,98.2%,98.6% and 100%,respectively.展开更多
The graft copolymerization of acrylic acid(AA) onto polyethylene glycol terephthalate(PET) fiber initialed by benzoy peroxide (BPO) was carried out in heterogeneous media.Moreover,modification of the grafted PET...The graft copolymerization of acrylic acid(AA) onto polyethylene glycol terephthalate(PET) fiber initialed by benzoy peroxide (BPO) was carried out in heterogeneous media.Moreover,modification of the grafted PET fiber(PET-AA) was done by changing the carboxyl group into acylamino group through the reaction with dimethylamine.The modified chelating fiber(NDWJN1) was characterized using elementary analysis,SEM and FT-IR spectroscopy.Adsorption kinetic curves indicated that NDWJNl could fast remove heavy metal ions and phytic acids from water effectively.Furthermore,batch kinetic studies indicated that heavy metal ions adsorbed to NDWJNl could be filted well by both pseudo-first-order and pseudo-second-order adsorption equations,but the intra-particle diffusion played a dominant role in the adsorption of phytic acids.展开更多
The present studies highlight the effective removal of As(V) and Cd(II) from aqueous solutions by superabsorbent poly (NIPAAm/AA/N-allylisatin) nanohydrogel. Batch removal studies were performed as a function of...The present studies highlight the effective removal of As(V) and Cd(II) from aqueous solutions by superabsorbent poly (NIPAAm/AA/N-allylisatin) nanohydrogel. Batch removal studies were performed as a function of treatment time, initial metal ion concentration, pH, and adsorbent dose. TEM micrographs confirm the particle size distribution in the range between 5 nm and 10 rim. The simple and metal ions adsorbed nanohydrogels were characterized by FF-IR, TGA, and EDX analysis. Finally, the equilibrium removal efficiency of the nanohydrogel was analyzed according to the Langmuir and Freundlich adsorption isotherm models which showed the removal of As(V) and Cd(II) metal ions fitted to Freundlich and Langmuir isotherms, respectively. Removal efficiency order of the metal ions is As(V) 〉 Cd(II).展开更多
A new method was developed for effective enrichment of Cd2+ ions from water with a calcium alginate(CaAlg) hydrogel filtration membrane. First, the CaAlg hydrogel filtration membrane was prepared without a pore-formin...A new method was developed for effective enrichment of Cd2+ ions from water with a calcium alginate(CaAlg) hydrogel filtration membrane. First, the CaAlg hydrogel filtration membrane was prepared without a pore-forming agent. This membrane was used to remove Cd^(2+) via ion exchange with Ca^(2+), and the Cd^(2+) was preserved in the CaAlg hydrogel. Then, the CaAlg hydrogel containing Cd^(2+) was soaked in a sodium citrate solution, and the hydrogel was fully dissolved. The removal rate of the CaAlg filtration membrane reached almost 100% within 120 min when the Cd^(2+) concentration was under 1 mg/L. Factors affecting the removal rate were investigated, such as NaAlg concentration, operating pressure, operating time and the initial concentration of Cd^(2+). The effects of initial Cd^(2+) concentration, pressure and filtration time on the enrichment factor were also investigated. The results show that the enrichment factor reached 87.3 when the pressure was 0.18 MPa and the filtration time was 240 min. Different enrichment factors could be achieved by adjusting the operating pressure and filtration time.展开更多
Biomineralization has become a research focus in wastewater treatment due to its much lower costs compared to traditional methods.However,the low sodium chloride(NaCl)-tolerance of bacteria limits applications to only...Biomineralization has become a research focus in wastewater treatment due to its much lower costs compared to traditional methods.However,the low sodium chloride(NaCl)-tolerance of bacteria limits applications to only water with low NaCl concentrations.Here,calcium ions in hypersaline wastewater(10%NaCl)were precipitated by free and immobilized Halovibrio mesolongii HMY2 bacteria and the differences between them were determined.The results show that calcium ions can be transformed into several types of calcium carbonate with a range of morphologies,abundant organic functional groups(C-H,C-O-C,C=O,etc),protein secondary structures(β-sheet,α-helix,3_(10)helix,andβ-turn),P=O and S-H indicated by P2p and S2p,and more negativeδ^(13)C_(PDB)(‰)values(-16.8‰to-18.4‰).The optimal conditions for the immobilized bacteria were determined by doing experiments with six factors and five levels and using response surface method.Under the action of two groups of immobilized bacteria prepared under the optimal conditions,by the 10^(th)day,Ca^(2+)ion precipitation ratios had increased to 79%-89%and 80%-88%with changes in magnesium ion cencentrations.Magnesium ions can significantly inhibit the calcium ion precipitation,and this inhibitory effect can be decreased under the action of immobilized bacteria.Minerals induced by immobilized bacteria always aggregated together,had higher contents of Mg,P,and S,lower stable carbon isotope values and less well-developed protein secondary structures.This study demonstrates an economic and eco-friendly method for recycling calcium ions in hypersaline wastewater,providing an easy step in the process of desalination.展开更多
Kinetic analysis of removal of three rare earth elements metals, Ce, Sm, and Ybions from aqueous solutions in a continuous flow fixed bed reactor using Dowex 50 W-X8 ion-exchange resin was conducted. The performance o...Kinetic analysis of removal of three rare earth elements metals, Ce, Sm, and Ybions from aqueous solutions in a continuous flow fixed bed reactor using Dowex 50 W-X8 ion-exchange resin was conducted. The performance of the fixed bed sorption was evaluated using the concept of the sorption breakthrough process. Parameters characteristic of a fixed bed sorption such as breakthrough times,saturation times, critical reactor lengths, and lengths of mass transfer zone were inferred from the metal ion concentration breakthrough curves. The sorption capacity of Dowex 50 W-X8 ion-exchange resin for Ce3+, Sm3+, and Yb3+ are 191, 252, and 294 mg/g, respectively. The sorption kinetics were evaluated using a zero-order, first-order and second-order reaction models. The kinetics of the sorption process follows a zero-order model which has not been reported before. The rate constants of sorption using the zero-order kinetic model are obtained. Two different analysis were conducted to identify whether the diffusion is intraparticle or film diffusion. Both analysis confirms that the film diffusion is the controlling mechanism in reactor bed.展开更多
文摘This paper describes the preparation of a membrane of polyacrylonitrile(PAN)and its corresponding membrane coated with polyaniline(PANI)for the adsorption of heavy metal ions.Scanning electron microscopy micrographs revealed that all the membranes exhibited nanofibrous morphology.The prepared membranes were characterized by Fourier transform infrared spectroscopy(FTIR).The prepared membranes were used as an adsorbent for hazardous heavy metal ions Pb^(2+) and Cr_(2)O^(2-)_(7).The adsorption capacity and the removal efficiency of the membranes were examined as function of the initial adsorbate concentration and pH of the medium.Coated membranes with PANI showed better adsorption performance and their direct current(DC)conductivities were correlated to heavy metal ion concentrations.Adsorption isotherms were also performed,and the adsorption process was tested according to the Langmuir and Freundlich models.The regeneration and reuse of the prepared membranes to re-adsorb heavy metal ions were also investigated.The enhancement in adsorption performance and reusability of PANI-coated membranes in comparison with non-coated ones is fully discussed.The results show that the maximum adsorption capacities of lead and chromate ions on the PANI-coated membranes are 290.12 and 1202.53 mg/g,respectively.
文摘Due to the environmental policies and economic reasons,the water used in some flotation operations of complex sulfide ores is recirculated,causing the ion concentration of some species to increase over time,affecting the flotation of the minerals of interest.In this work,an experimental and thermodynamic analysis of the synthetic solutions was presented with a high content of calcium and sulfate ions.The study focused on evaluating the use of two aluminum compounds for the precipitation of Ca^(2+)and SO_(4)^(2−)in the form of ettringite.The amorphous aluminum hydroxide was found to be more efficient than the crystalline one,giving rise to 83%calcium and 91%sulfate removal.The XRD analysis of the solids showed the main reaction product of ettringite,accompanied by small amounts of calcite,due to the absorption of atmospheric carbon dioxide.The final solution after the chemical treatment showed residual calcium and sulfate concentrations below 200 mg/L.Finally,the kinetics of calcium removal appeared to correspond to a second order reaction with respect to calcium concentration,with an apparent activation energy of 53.48 kJ/mol,which may suggest that the ettringite precipitation process is governed by the chemical reaction.
基金This study was funded by Universiti Sains Malaysia, ResearchUniversity Grant (1001.PBAHAN.8014095). The authorsalso acknowledge the support from USM Fellowship.
文摘The presence of silver ions(Ag(I))in wastewater has a detrimental effect on living organisms.Removal of soluble silver,especially at low concentrations,is challenging.This paper presents the use ofβ-MnO2 particles as a photocatalyst to remove Ag(I)ions selectively from aqueous solution at various pH levels.Inductively coupled plasma mass spectrometry(ICP-MS),X-ray diffraction(XRD),field emission electron microscope(FESEM),transmission electron microscopy(TEM),and X-ray photoelectron microscopy(XPS)were employed to determine the removal efficiency and to characterize the deposition of silver onto the surface ofβ-MnO2 particles.The optimum pH for the removal of Ag(I)ions was at pH 4 with 99%removal efficiency under 1 h of visible light irradiation.This phenomenon can be attributed to the electrostatic attraction betweenβ-MnO2 particles and Ag(I)ions as well as the suppression of electron–hole recombination in the presence of H+ions.
基金the financial support of the Maddox Foundation and the Donovan Maddox Distinguished Engineering Chair Endowment.
文摘A 2-dimensional multicomponent ion transport model based on Nernst-Planck(NP)equation and electroneutrality assumption is developed for an electrodialysis(ED)cell operated in the ohmic regime.The flow in channels are assumed incompressible,isothermal,and laminar.Donnan equilibrium and flux continuity are considered at ionexchange membrane(IEM)-solution interfaces.To account for tortuosity effects inside membranes,effective ionic diffusion coefficients are calculated using membranes water volume fractions.The developed multicomponent model is used to elucidate the effects of feed solution properties,cell properties,system hydrodynamics,operational conditions,and membrane properties on selective divalent ion removal in the cell.The results indicate that the selective removal of divalent ions improves with decreasing the cell length,imposed potential,and ionic strength of feed water.Enhanced mixing in spacer-filled cell also promotes selective divalent ion removal.Higher concentrations of fixed charges on the membranes results in greater selectivity toward divalent ions at short cell length and low imposed potentials.With equal concentrations of fixed charges,membranes with high water content are less favorable for selective divalent ion removal.The developed framework enables the optimum selection of cell design,IEMs,spacer design,and operational conditions to selectively remove ions from multicomponent solutions.
基金supported by the National Key Research and Development Project (No.2020YFA0907400)Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDPB2005)+2 种基金National Natural Science Foundation of China(No.21777178)the National Young Top-Notch Talents (No.W03070030)Youth Innovation Promotion Association of the Chinese Academy of Sciences (No.Y202011)。
文摘Single particle-inductively coupled plasma mass spectrometry (SP-ICP-MS) is a powerful tool for size-characterization of metal-containing nanoparticles (MCNs) at environmentally relevant concentrations,however,coexisting dissolved metal ions greatly interfere with the accuracy of particle size analysis.The purpose of this study is to develop an online technique that couples hollow fiber ultrafiltration (HFUF) with SP-ICP-MS to improve the accuracy and size detection limit of MCNs by removing metal ions from suspensions of MCNs.Through systematic optimization of conditions including the type and concentration of surfactant and complexing agent,carrier pH,and ion cleaning time,HFUF completely removes metal ions but retains the MCNs in suspension.The optimal conditions include using a mixture of 0.05 vol.%FL-70 and 0.5 mmol/L Na2S2O_(3)(pH=8.0) as the carrier and 4 min as the ion cleaning time.At these conditions,HFUF-SP-ICP-MS accurately determines the sizes of MCNs,and the results agree with the size distribution determined by transmission electron microscopy,even when metal ions also are present in the sample.In addition,reducing the ionic background through HFUF also lowers the particle size detection limit with SP-ICP-MS (e.g.,from 28.3 to 14.2 nm for gold nanoparticles).This size-based ion-removal principle provided by HFUF is suitable for both cations (e.g.,Ag+) and anions (e.g.,AuCl_(4)^(-)) and thus has good versatility compared to ion exchange purification and promising prospects for the removal of salts and macromolecules before single particle analysis.
文摘Agricultural waste straw is the renewable resource with the highest annual yield in the world.In value-added applications of agricultural waste,dicarboxyl cellulose nanocrystals(DCCs)are prepared from rice,wheat,and corn straw by sequential periodate-chlorite oxidation.In this study,DCCs from rice,wheat,and corn straw were characterized by transmission electron microscopy(TEM),Fourier transform infrared spectrometer,X-ray diffractometer(XRD),and thermal gravimetric analysis(TGA).The carboxyl content of the DCCs was also investigated.XRD results show that the crystallinity index decreased after sequential periodate-chlorite oxidation;however,the cellulose I structure was maintained.TEM results show that rod-shaped DCCs with an average length and width of 287.0 nm and 9.9 nm,respectively,were successfully prepared by sequential periodate-chlorite oxidation.The carboxyl content of the DCCs was around 3.9 mmol/g,and not affected by the type of straw.Experiments to study the removal of copper ions in aqueous medium were performed with the prepared DCCs.The adsorption capacities of copper ions were 131,162,and 144 mg/g for DCCs prepared from rice,wheat,and corn straws,respectively.The results show that DCCs prepared from rice,wheat,and corn straws by sequential periodatechlorite oxidation have potential for the removal of copper ions from aqueous medium.
文摘The water crisis is an increasingly severe global problem that may be reduced by reusing wastewater after suitable treatment methods. Nowadays, biosorption is one of the main parts of environmental technology which could adsorb heavy metals. This paper describes the adsorption of Copper(II) ions from aqueous solution using a mixture of corn stalk and tomato waste which were oxidized with nitric acid. Kinetic and isotherm studies were carried out by studying the effects of parameters such as concentration dosage, time and pH. It was found that the maximum sorption capacity of the mixture of modified corn stalk and modified tomato waste (q<sub>m</sub> = 25 mg/g) was higher than the modified corn stalk (q<sub>m</sub> = 20.8 mg/g). Analysis indicated that pseudo-second-order kinetics controlled the adsorption rate and it has been proposed to correlate the experimental data well.
文摘This work reports synthesis and characterization of heterocyclic functionalized polymers, poly(triazole-etherimidazole)s(PTAEI), from a dialkyne-terminated compound, 3-(4,5-bis(4-(propargyloxy)phenyl)-1H-imidazol-2-yl)-9-ethyl-9H-carbazole, by using click reaction. PTAEIs were characterized and their properties such as solubility, thermal, mechanical, photophysical and metal ions adsorption were investigated. These polymers had weight average molar masses(Mw) in the range of 19100-26700 g/mol, exhibited excellent solubility in polar aprotic solvents and formed low-colored flexible thin films by solution casting method. They exhibited good thermal stability with glass transition temperatures(Tg) between 160 °C and 211 °C and 10% weight loss temperatures(T10%) in the range of 308-426 °C. Nanocomposites of PTAEIs with epoxide-terminated Fe3O4 showed that strong interfacial interaction between inorganic particles and the polymer matrix contributed to the enhanced thermal and mechanical properties. The photoluminescence intensity of the PTAEIs increased and the spectra red shifted with increasing Fe3O4 content. The PTAEIs and nanocomposites were tested for their extraction capability of metal ions from aqueous solutions either individually or in the mixture.
基金supports from the Jinhua Polytechnic(SGYC11070201X004)Jinhua City Public Welfare Application Research Project(2022-4-002)Fundamental Research Funds for the Central Universities(2662020GXD002).
文摘Chemical precipitation is a widely applied approach for a liquid fraction of digestate(LFD)of agricultural waste but its large-scale application requires low-cost and efficient precipitating agents and novel process design.This study evaluated novel approach for the efficient removal of contaminants from the LFD using fly ash-based chemical precipitation,followed by filtration and CO_(2) mineralization.The technical feasibility of this approach was evaluated using pH and electrical conductivity(EC),and removal efficiencies of total phosphorus(TP),chemical oxygen demand(COD)and heavy metals during the treatment.The fly ash used in this study showed a promising performance as a chemical precipitation agent for COD and TP removal from the treated LFD involving complex effects of precipitation and adsorption.CO_(2) bubbling after fly ash-based chemical precipitation provided further COD and TP removal by carbonation reactions between CO_(2) and the excessive alkaline minerals in fly ash.Although addition of fly ash to untreated LFD increased pH from 8.3 to 12.9 and EC from 7.01 to 13.7 mS·cm^(−1),CO_(2) bubbling helped neutralize the treated LFD and reduce the EC,and concentrations of toxic ions by carbonation reactions.The fly ash-based chemical precipitation and CO_(2) mineralization had>93%COD and>98%TP removal efficiencies,and resulted in an EC of<2 mS·cm^(−1) and a neutral pH in the treated LFD,as well as the high purity calcite product.
基金Project supported by the National Science and Technology Support Program(2015BAB19B03)
文摘The deep removal of Al, Fe(Ⅱ/Ⅲ), Ca, Zr, Ti and Si from scandium chloride solution was carried out by using 732-type strong acid cation exchange resin. The effects of pH value, contact time and complexing agents(EDTA) on the purification process are investigated. The results indicate that the 732-type resin have a good scandium selectivity and the adsorption order is Sc 〉 Fe(Ⅲ)〉Al 〉 Ca 〉 Zr 〉 Ti 〉 Si in the pH range of 1-3. The separation of Sc and Zr, Si, Ti can be directly carried out because the resin have a good adsorption effect on Sc, AI and Fe(Ⅲ) but poor adsorption effect on Zr, Si and Ti under the condition of pH = 2.5 and contact time 180 min. The Fe(Ⅱ), Ca and Al are selectively adsorbed on the resin by adding reducing agent ascorbic acid and EDTA into the solution for reducing Fe(Ⅲ) to Fe(Ⅱ) and complexing Sc.By using two-step ion exchange adsorption separation method, the removal rates of Fe(Ⅲ), Ti, Al, Ca, Zr and Si are 95.5%,99.8%,100%,98.2%,98.6% and 100%,respectively.
基金support provided by the Key National Nature Science Fund(No.50938004)the National Science Funds for Young Scientists(No.50102582)+1 种基金Nature Science Fund of Jiangsu Province(No. BK2010381)the Fundamental Research Funds for the Central Universities
文摘The graft copolymerization of acrylic acid(AA) onto polyethylene glycol terephthalate(PET) fiber initialed by benzoy peroxide (BPO) was carried out in heterogeneous media.Moreover,modification of the grafted PET fiber(PET-AA) was done by changing the carboxyl group into acylamino group through the reaction with dimethylamine.The modified chelating fiber(NDWJN1) was characterized using elementary analysis,SEM and FT-IR spectroscopy.Adsorption kinetic curves indicated that NDWJNl could fast remove heavy metal ions and phytic acids from water effectively.Furthermore,batch kinetic studies indicated that heavy metal ions adsorbed to NDWJNl could be filted well by both pseudo-first-order and pseudo-second-order adsorption equations,but the intra-particle diffusion played a dominant role in the adsorption of phytic acids.
基金the University Grant Commission,New Delhi(Project No.F.39-685/2010(SR)),to whom researches are gratefully acknowledged.
文摘The present studies highlight the effective removal of As(V) and Cd(II) from aqueous solutions by superabsorbent poly (NIPAAm/AA/N-allylisatin) nanohydrogel. Batch removal studies were performed as a function of treatment time, initial metal ion concentration, pH, and adsorbent dose. TEM micrographs confirm the particle size distribution in the range between 5 nm and 10 rim. The simple and metal ions adsorbed nanohydrogels were characterized by FF-IR, TGA, and EDX analysis. Finally, the equilibrium removal efficiency of the nanohydrogel was analyzed according to the Langmuir and Freundlich adsorption isotherm models which showed the removal of As(V) and Cd(II) metal ions fitted to Freundlich and Langmuir isotherms, respectively. Removal efficiency order of the metal ions is As(V) 〉 Cd(II).
基金supported by the National Natural Science Foundation of China(Grant Nos.51678409,21504063&51708407)the Special Scientific Research Fund of Agricultural Public Welfare Profession of China(Grant No.21403014-1)+1 种基金the Tianjin Science Technology Research Funds of China(Grant Nos.16JCZDJC37500,15JCQNJC08900&17JCQNJC08700)the Tianjin Science and Technology Correspondent Project(Grant No.16JCTPJC44800)
文摘A new method was developed for effective enrichment of Cd2+ ions from water with a calcium alginate(CaAlg) hydrogel filtration membrane. First, the CaAlg hydrogel filtration membrane was prepared without a pore-forming agent. This membrane was used to remove Cd^(2+) via ion exchange with Ca^(2+), and the Cd^(2+) was preserved in the CaAlg hydrogel. Then, the CaAlg hydrogel containing Cd^(2+) was soaked in a sodium citrate solution, and the hydrogel was fully dissolved. The removal rate of the CaAlg filtration membrane reached almost 100% within 120 min when the Cd^(2+) concentration was under 1 mg/L. Factors affecting the removal rate were investigated, such as NaAlg concentration, operating pressure, operating time and the initial concentration of Cd^(2+). The effects of initial Cd^(2+) concentration, pressure and filtration time on the enrichment factor were also investigated. The results show that the enrichment factor reached 87.3 when the pressure was 0.18 MPa and the filtration time was 240 min. Different enrichment factors could be achieved by adjusting the operating pressure and filtration time.
基金supported by the National Natural Science Foundation of China(Nos.41772095,42072136,41972108,42106144)the Natural Science Foundation of Shandong Province(Nos.ZR2019MD027,ZR2020QD089,ZR2021QE125)+4 种基金SDUST Research Fund(No.2015TDJH101)Scientific and Technological Innovation Project Financially Supported by Qingdao National Laboratory for Marine Science and Technology(No.2016ASKJ13)Major Innovation Projects of Key R&D Program of Shandong Province(No.2019JZZY020808)the Foundation of SINOPEC(No.P20059-7)Innovation and Entrepreneurship Training program for College students(Nos.202110424157,202110424158)。
文摘Biomineralization has become a research focus in wastewater treatment due to its much lower costs compared to traditional methods.However,the low sodium chloride(NaCl)-tolerance of bacteria limits applications to only water with low NaCl concentrations.Here,calcium ions in hypersaline wastewater(10%NaCl)were precipitated by free and immobilized Halovibrio mesolongii HMY2 bacteria and the differences between them were determined.The results show that calcium ions can be transformed into several types of calcium carbonate with a range of morphologies,abundant organic functional groups(C-H,C-O-C,C=O,etc),protein secondary structures(β-sheet,α-helix,3_(10)helix,andβ-turn),P=O and S-H indicated by P2p and S2p,and more negativeδ^(13)C_(PDB)(‰)values(-16.8‰to-18.4‰).The optimal conditions for the immobilized bacteria were determined by doing experiments with six factors and five levels and using response surface method.Under the action of two groups of immobilized bacteria prepared under the optimal conditions,by the 10^(th)day,Ca^(2+)ion precipitation ratios had increased to 79%-89%and 80%-88%with changes in magnesium ion cencentrations.Magnesium ions can significantly inhibit the calcium ion precipitation,and this inhibitory effect can be decreased under the action of immobilized bacteria.Minerals induced by immobilized bacteria always aggregated together,had higher contents of Mg,P,and S,lower stable carbon isotope values and less well-developed protein secondary structures.This study demonstrates an economic and eco-friendly method for recycling calcium ions in hypersaline wastewater,providing an easy step in the process of desalination.
文摘Kinetic analysis of removal of three rare earth elements metals, Ce, Sm, and Ybions from aqueous solutions in a continuous flow fixed bed reactor using Dowex 50 W-X8 ion-exchange resin was conducted. The performance of the fixed bed sorption was evaluated using the concept of the sorption breakthrough process. Parameters characteristic of a fixed bed sorption such as breakthrough times,saturation times, critical reactor lengths, and lengths of mass transfer zone were inferred from the metal ion concentration breakthrough curves. The sorption capacity of Dowex 50 W-X8 ion-exchange resin for Ce3+, Sm3+, and Yb3+ are 191, 252, and 294 mg/g, respectively. The sorption kinetics were evaluated using a zero-order, first-order and second-order reaction models. The kinetics of the sorption process follows a zero-order model which has not been reported before. The rate constants of sorption using the zero-order kinetic model are obtained. Two different analysis were conducted to identify whether the diffusion is intraparticle or film diffusion. Both analysis confirms that the film diffusion is the controlling mechanism in reactor bed.
基金funding from the Strategic Priority Research Program of the Chinese Academy of Sciences(CAS,XDB0450401)the National Natural Science Foundation of China(22278387 and 22321001)+4 种基金CAS Project for Young Scientists in Basic Research(YSBR-070)the National Key Research and Development Program of China(2022YFA1203601)the Natural Science Foundation of Anhui Province(2208085QB60)Anhui Provincial Innovation Project Funding Program for Overseas Students(2022LCX006)USTC Research Funds of the Double First Class Initiative(YD2060002022).
文摘传统二维纳米片膜在分子和离子分离领域具有巨大潜力,然而在实际污水处理中不可避免地会出现溶胀和易氧化的问题.本研究利用一种新型二维纳米片AgCrSe_(2),采用聚多巴胺(PDA)原位交联策略,成功构筑了高稳定性二维AgCrSe_(2)-PDA膜.该膜能够耐受酸性、碱性介质以及氧化性溶液(0.3 wt%过氧化氢),展现出优异的抗溶胀和抗氧化稳定性.此外,该膜对带负电的染料和乙二胺四乙酸(EDTA)络合的重金属离子的截留率接近100%,通量约为5.0 L m^(−2) h^(−1) bar^(−1).值得注意的是,经过140小时的错流过滤,尽管膜通量略有下降,但该膜对CuEDTA的截留率仍保持在90%左右.这种高稳定性的膜结构源自于PDA与AgCrSe_(2)纳米片之间的配位相互作用.本研究为开发高稳定性的二维膜提供了有效的策略,为工业污水净化提供了新型膜材料.