期刊文献+
共找到8,450篇文章
< 1 2 250 >
每页显示 20 50 100
Recent advances in fabrication and functions of neuromorphic system based on organic field effect transistor
1
作者 Yaqian Liu Minrui Lian +1 位作者 Wei Chen Huipeng Chen 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期273-295,共23页
The development of various artificial electronics and machines would explosively increase the amount of information and data,which need to be processed via in-situ remediation.Bioinspired synapse devices can store and... The development of various artificial electronics and machines would explosively increase the amount of information and data,which need to be processed via in-situ remediation.Bioinspired synapse devices can store and process signals in a parallel way,thus improving fault tolerance and decreasing the power consumption of artificial systems.The organic field effect transistor(OFET)is a promising component for bioinspired neuromorphic systems because it is suitable for large-scale integrated circuits and flexible devices.In this review,the organic semiconductor materials,structures and fabrication,and different artificial sensory perception systems functions based on neuromorphic OFET devices are summarized.Subsequently,a summary and challenges of neuromorphic OFET devices are provided.This review presents a detailed introduction to the recent progress of neuromorphic OFET devices from semiconductor materials to perception systems,which would serve as a reference for the development of neuromorphic systems in future bioinspired electronics. 展开更多
关键词 organic field effect transistor neuromorphic systems synaptic transistor sensory perception systems device fabrication
下载PDF
Internal Polarization Field Induced Hydroxyl Spillover Effect for Industrial Water Splitting Electrolyzers
2
作者 Jingyi Xie Fuli Wang +3 位作者 Yanan Zhou Yiwen Dong Yongming Chai Bin Dong 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期438-449,共12页
The formation of multiple oxygen intermediates supporting efficient oxygen evolution reaction(OER)are affinitive with hydroxyl adsorption.However,ability of the catalyst to capture hydroxyl and maintain the continuous... The formation of multiple oxygen intermediates supporting efficient oxygen evolution reaction(OER)are affinitive with hydroxyl adsorption.However,ability of the catalyst to capture hydroxyl and maintain the continuous supply at active sits remains a tremendous challenge.Herein,an affordable Ni2P/FeP2 heterostructure is presented to form the internal polarization field(IPF),arising hydroxyl spillover(HOSo)during OER.Facilitated by IPF,the oriented HOSo from FeP2 to Ni2P can activate the Ni site with a new hydroxyl transmission channel and build the optimized reaction path of oxygen intermediates for lower adsorption energy,boosting the OER activity(242 mV vs.RHE at 100 mA cm-2)for least 100 h.More interestingly,for the anion exchange membrane water electrolyzer(AEMWE)with low concentration electrolyte,the advantage of HOSo effect is significantly amplified,delivering 1 A cm^(-2)at a low cell voltage of 1.88 V with excellent stability for over 50 h. 展开更多
关键词 Hydroxyl spillover effect Internal polarization field HETEROSTRUCTURE Oxygen reduction reaction Anion exchange membrane water electrolysis
下载PDF
Study of the Magnetocaloric Effect in La0.5Sm0.2Sr0.3Mn1-xFexO3 (x = 0 and 0.05) Manganites with the Mean-Field Theory
3
作者 Amnah Alofi Salha Khadhraui 《Advances in Materials Physics and Chemistry》 CAS 2024年第7期113-122,共10页
In this paper, the magnetocaloric in La0.5Sm0.2Sr0.3Mn1-xFexO3 compounds with x = 0 (LSSMO) and x = 0.05 (LSSMFO) were simulated using mean field model theory. A strong consistency was observed between the theoretical... In this paper, the magnetocaloric in La0.5Sm0.2Sr0.3Mn1-xFexO3 compounds with x = 0 (LSSMO) and x = 0.05 (LSSMFO) were simulated using mean field model theory. A strong consistency was observed between the theoretical and experimental curves of magnetizations and magnetic entropy changes, −ΔSM(T). Based on the mean-field generated −ΔSM(T), the substantial Temperature-averaged Entropy Change (TEC) values reinforce the appropriateness of these materials for use in magnetic refrigeration technology within TEC (10) values of 1 and 0.57 J∙kg−1∙K−1under 1 T applied magnetic field. 展开更多
关键词 MANGANITES MAGNETIZATION Magnetocaloric effect Mean field Model SIMULATION
下载PDF
Optimally arranged TiO_(2)@MoS_(2) heterostructures with effectively induced built-in electric field for high-performance lithium-sulfur batteries 被引量:1
4
作者 Jeongyoub Lee Changhoon Choi +12 位作者 Jung Been Park Seungho Yu Jinho Ha Hyungsoo Lee Gyumin Jang Young Sun Park Juwon Yun Hayoung Im Subin Moon Soobin Lee Jung-Il Choi Dong-Wan Kim Jooho Moon 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期496-508,I0012,共14页
To overcome the serious technological issues affecting lithium-sulfur(Li-S) batteries,such as sluggish sulfur redox kinetics and the detrimental shuttle effect,heterostructure engineering has been investigated as a st... To overcome the serious technological issues affecting lithium-sulfur(Li-S) batteries,such as sluggish sulfur redox kinetics and the detrimental shuttle effect,heterostructure engineering has been investigated as a strategy to effectively capture soluble lithium polysulfide intermediates and promote their conversion reaction by integrating highly polar metal oxides with catalytically active metals sulfides.However,to fully exploit the outstanding properties of heterostructure-based composites,their detailed structure and interfacial contacts should be designed rationally.Herein,optimally arranged TiO_(2)and MoS_(2)-based heterostructures(TiO_(2)@MoS_(2)) are fabricated on carbon cloth as a multifunctional interlayer to efficiently trap polysulfide intermediates and accelerate their redox kinetics.Owing to the synergistic effects between TiO_(2)and MoS_(2)and the uniform heterointerface distribution that induces the ideally oriented built-in electric field,Li-S batteries with TiO_(2)@MoS_(2)interlayers exhibit high rate capability(601 mA h g^(-1)at 5 C),good cycling stability(capacity-fade rate of 0.067% per cycle over 500 cycles at2 C),and satisfactory areal capacity(5.2 mA h cm^(-2)) under an increased sulfur loading of 5.2 mg cm^(-2).Moreover,by comparing with a MoS_(2)@TiO_(2)interlayer composed of reversely arranged heterostructures,the effect of the built-in electric field’s direction on the electrocatalytic reactions of polysulfide intermediates is thoroughly investigated for the first time.The superior electrocatalytic activities of the rationally arranged TiO_(2)@MoS_(2)interlayer demonstrate the importance of optimizing the built-in electric field of heterostructures for producing high-performance Li-S batteries. 展开更多
关键词 Lithium-sulfur batteries Shuttle effect TiO_(2)-MoS_(2)heterostructure engineering Built-in electric field Multifunctional interlayers
下载PDF
Inertial effect on minimum magnetic field for magnetization reversal in ultrafast magnetism
5
作者 南雪萌 屈川 +1 位作者 贺鹏斌 李再东 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期571-575,共5页
In the field of ultrafast magnetism,i.e.,subpicosecond or femtosecond time scales,the dynamics of magnetization can be described by the inertial Landau-Lifhitz-Gilbert equation.In terms of this equation,the intrinsic ... In the field of ultrafast magnetism,i.e.,subpicosecond or femtosecond time scales,the dynamics of magnetization can be described by the inertial Landau-Lifhitz-Gilbert equation.In terms of this equation,the intrinsic characteristics are investigated in detail for the theoretical limit of the magnetization reversal field.We can find that there is a critical value for the inertia parameterτ_(c),which is affected by the damping and anisotropy parameter of the system.When the inertial parameter factorτ<τ_(c),the limit value of the magnetization reversal field under the ultrafast magnetic mechanism is smaller than that of the fast magnetic mechanism.Whenτ>τ_(c),the limit value of the magnetization reversal field will be larger than the limit value under the fast magnetic mechanism.Moreover,it is important to point out that the limit value of the magnetization reversal field under the ultrafast magnetic mechanism decreases with the increasing inertial factor,asτ<τ_(c)/2,which increases with inertial factorτasτ>τ_(c)/2.Finally,with the joint action of damping and anisotropy,compared with fast magnetism,we find that the limit value of the magnetization reversal field has rich variation characteristics,i.e.,there is not only a linear and proportional relationship,but also an inverse relationship,which is very significant for the study of ultrafast magnetism. 展开更多
关键词 inertial effect minimum magnetic field ultrafast magnetism
下载PDF
High-performance vertical GaN field-effect transistor with an integrated self-adapted channel diode for reverse conduction
6
作者 邓思宇 廖德尊 +3 位作者 魏杰 张成 孙涛 罗小蓉 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期570-576,共7页
A vertical GaN field-effect transistor with an integrated self-adapted channel diode(CD-FET)is proposed to improve the reverse conduction performance.It features a channel diode(CD)formed between a trench source on th... A vertical GaN field-effect transistor with an integrated self-adapted channel diode(CD-FET)is proposed to improve the reverse conduction performance.It features a channel diode(CD)formed between a trench source on the insulator and a P-type barrier layer(PBL),together with a P-shield layer under the trench gate.At forward conduction,the CD is pinched off due to depletion effects caused by both the PBL and the metal-insulator-semiconductor structure from the trench source,without influencing the on-state characteristic of the CD-FET.At reverse conduction,the depletion region narrows and thus the CD turns on to achieve a very low turn-on voltage(V_(F)),preventing the inherent body diode from turning on.Meanwhile,the PBL and P-shield layer can modulate the electric field distribution to improve the off-state breakdown voltage(BV).Moreover,the P-shield not only shields the gate from a high electric field but also transforms part of C_(GD)to CGS so as to significantly reduce the gate charge(Q_(GD)),leading to a low switching loss(E_(switch)).Consequently,the proposed CD-FET achieves a low V_(F)of 1.65 V and a high BV of 1446 V,and V_(F),Q_(GD)and E_(switch)of the CD-FET are decreased by 49%,55%and 80%,respectively,compared with those of a conventional metal-oxide-semiconductor field-effect transistor(MOSFET). 展开更多
关键词 GaN field effect transistor reverse conduction integrated diode turn-on voltage
下载PDF
Si–Ge based vertical tunnel field-effect transistor of junction-less structure with improved sensitivity using dielectric modulation for biosensing applications
7
作者 Lucky Agarwal Varun Mishra +2 位作者 Ravi Prakash Dwivedi Vishal Goyal Shweta Tripathi 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期644-651,共8页
A dielectric modulation strategy for gate oxide material that enhances the sensing performance of biosensors in junction-less vertical tunnel field effect transistors(TFETs)is reported.The junction-less technique,in w... A dielectric modulation strategy for gate oxide material that enhances the sensing performance of biosensors in junction-less vertical tunnel field effect transistors(TFETs)is reported.The junction-less technique,in which metals with specific work functions are deposited on the source region to modulate the channel conductivity,is used to provide the necessary doping for the proper functioning of the device.TCAD simulation studies of the proposed structure and junction structure have been compared,and showed an enhanced rectification of 10^(4) times.The proposed structure is designed to have a nanocavity of length 10 nm on the left-and right-hand sides of the fixed gate dielectric,which improves the biosensor capture area,and hence the sensitivity.By considering neutral and charged biomolecules with different dielectric constants,TCAD simulation studies were compared for their sensitivities.The off-state current IOFFcan be used as a suitable sensing parameter because it has been observed that the proposed sensor exhibits a significant variation in drain current.Additionally,it has been investigated how positively and negatively charged biomolecules affect the drain current and threshold voltage.To explore the device performance when the nanogaps are fully filled,half filled and unevenly filled,extensive TCAD simulations have been run.The proposed TFET structure is further benchmarked to other structures to show its better sensing capabilities. 展开更多
关键词 biomolecules high-k dielectric junction-less vertical tunnel field effect transistor(TFET)
下载PDF
A non-quasi-static model for nanowire gate-all-around tunneling field-effect transistors
8
作者 芦宾 马鑫 +3 位作者 王大为 柴国强 董林鹏 苗渊浩 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期660-665,共6页
Nanowires with gate-all-around(GAA) structures are widely considered as the most promising candidate for 3-nm technology with the best ability of suppressing the short channel effects,and tunneling field effect transi... Nanowires with gate-all-around(GAA) structures are widely considered as the most promising candidate for 3-nm technology with the best ability of suppressing the short channel effects,and tunneling field effect transistors(TFETs)based on GAA structures also present improved performance.In this paper,a non-quasi-static(NQS) device model is developed for nanowire GAA TFETs.The model can predict the transient current and capacitance varying with operation frequency,which is beyond the ability of the quasi-static(QS) model published before.Excellent agreements between the model results and numerical simulations are obtained.Moreover,the NQS model is derived from the published QS model including the current-voltage(I-V) and capacitance-voltage(C-V) characteristics.Therefore,the NQS model is compatible with the QS model for giving comprehensive understanding of GAA TFETs and would be helpful for further study of TFET circuits based on nanowire GAA structure. 展开更多
关键词 tunneling field effect transistor relaxation time approximation non-quasi-static non-quasi-static
下载PDF
Design and Analysis of Graphene Based Tunnel Field Effect Transistor with Various Ambipolar Reducing Techniques
9
作者 Puneet Kumar Mishra Amrita Rai +5 位作者 Nitin Sharma Kanika Sharma Nitin Mittal Mohd Anul Haq Ilyas Khan ElSayed M.Tag El Din 《Computers, Materials & Continua》 SCIE EI 2023年第7期1309-1320,共12页
The fundamental advantages of carbon-based graphene material,such as its high tunnelling probability,symmetric band structure(linear dependence of the energy band on the wave direction),low effective mass,and characte... The fundamental advantages of carbon-based graphene material,such as its high tunnelling probability,symmetric band structure(linear dependence of the energy band on the wave direction),low effective mass,and characteristics of its 2D atomic layers,are the main focus of this research work.The impact of channel thickness,gate under-lap,asymmetric source/drain doping method,workfunction of gate contact,and High-K material on Graphene-based Tunnel Field Effect Transistor(TFET)is analyzed with 20 nm technology.Physical modelling and electrical characteristic performance have been simulated using the Atlas device simulator of SILVACO TCAD with user-defined material syntax for the newly included graphene material in comparison to silicon carbide(SiC).The simulation results in significant suppression of ambipolar current to voltage characteristics of TFET and modelled device exhibits a significant improvement in subthreshold swing(0.0159 V/decade),the ratio of Ion/Ioff(1000),and threshold voltage(-0.2 V with highly doped p-type source and 0.2 V with highly doped n-type drain)with power supply of 0.5 V,which make it useful for low power digital applications. 展开更多
关键词 GRAPHENE tunnel field effect transistor(TFET) band to band tunnelling subthreshold swing
下载PDF
Strain-induced fast domain wall motion in hybrid piezoelectric-magnetostrictive structures with Rashba and nonlinear dissipative effects
10
作者 Sumit Maity Sarabindu Dolui Sharad Dwivedi 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2024年第9期83-97,共15页
The prime objective of this work is to analyze the motion of magnetic domain walls(DWs)in a thin layer of magnetostrictive material that is perfectly attached to the upper surface of a thick piezoelectric actuator.In ... The prime objective of this work is to analyze the motion of magnetic domain walls(DWs)in a thin layer of magnetostrictive material that is perfectly attached to the upper surface of a thick piezoelectric actuator.In our analysis,we consider a transversely isotropic hexagonal subclass of magnetostrictive materials that demonstrate structural inversion asymmetry.To this aim,we utilize the one-dimensional extended Landau-Lifshitz-Gilbert equations,which describe the magnetization dynamics under the influence of various factors such as magnetic fields,spin-polarized electric currents,magnetoelastic effects,magnetocrystalline anisotropy,Rashba fields,and nonlinear dry-friction dissipation.By employing the standard traveling wave ansatz,we derive an analytical expression of the most relevant dynamic features:velocity,mobility,threshold,breakdown,and propagation direction of the DWs in both steady and precessional dynamic regimes.Our analytical investigation provides insights into how effectively the considered parameters can control the DW motion.Finally,numerical illustrations of the obtained analytical results show a qualitative agreement with the recent observations. 展开更多
关键词 Domain wall Magnetoelastic field Extended Landau-Lifshitz-Gilbert equation Dry-friction dissipation Rashba effect
原文传递
Magnetic Field Controllable Photocurrent Properties in BiFe_(0.9)Ni_(0.1)O_(3)/La_(0.7)Sr_(0.3)MnO_(3) Laminate Thin Film
11
作者 Guanzhong Huo Ke Wang +5 位作者 Qingying Ye Shuiyuan Chen Chao Su Yuxiang Zhang Guilin Chen Zhigao Huang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期381-388,共8页
This paper reports a multifunctional magnetic-photoelectric laminate device based on the integration of spintronic material(La_(0.7)Sr_(0.3)MnO_(3))and multiferroic(Ni-doped BiFeO_(3)),in which the repeatable modulati... This paper reports a multifunctional magnetic-photoelectric laminate device based on the integration of spintronic material(La_(0.7)Sr_(0.3)MnO_(3))and multiferroic(Ni-doped BiFeO_(3)),in which the repeatable modulation effect on the photoelectric properties were achieved by applying external magnetic fields.More obviously,photocurrent density(J)of the laminate was largely enhanced,the change rate of J up to 287.6%is obtained.This sensing function effect should be attributed to the low-field magnetoresistance effect in perovskite manganite and the scattering of spin photoelectron in multiferroic material.The laminate perfectly combines the functions of sensor and controller,which can not only reflect the intensity of environmental magnetic field,but also modulate the photoelectric conversion performance.This work provides an alternative and facile way to realize multi-degree-of-freedom control for photoelectric conversion performances and lastly miniaturize multifunction device. 展开更多
关键词 bismuth ferrite low-field magnetoresistance effect magnetic field modulation perovskite manganite PHOTOCURRENT
下载PDF
Magneto-optical Kerr Effect of Mono-layer NiX_(2)(X=Cl,Br,I):A Density Functional Theory Study
12
作者 FAN Qingqian DU Chaochao 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1121-1128,共8页
The full-potential linearized augmented plane wave plus local orbital method is utilized for exploring the electronic,magnetic,and magneto-optical properties of the NiX_(2)(X=Cl,Br,and I)single layer.The first-princip... The full-potential linearized augmented plane wave plus local orbital method is utilized for exploring the electronic,magnetic,and magneto-optical properties of the NiX_(2)(X=Cl,Br,and I)single layer.The first-principles calculation demonstrates that these compounds are ferromagnetic indirect semiconductors,and the energy band gaps of NiX_(2)for X=Cl,Br,and I are 3.888,3.134,and 2.157 eV,respectively.The magnetic moments of Ni atoms in NiX_(2)monolayer are 1.656,1.588,1.449μB,and their magneto-crystalline anisotropy energies are 0.167,0.029,0.090 meV,respectively.Based on the macro-linear response theory,we systematically studied the influences of the external magnetic field and out-of-plane strain on the magneto-optical Kerr effect(MOKE)spectrum of the NiX_(2)single layer.It is found that,when the external magnetic field is perpendicular to the sample plane,the value of the Kerr rotation angle reaches the maximum,and the single-layer NiI_(2)material has a Kerr rotation angle of 1.89°at the photon energy of 1.986 eV.Besides,the Kerr rotation spectrum of NiCl_(2)and NiBr_(2)monolayers redshift as the out-of-plane strain increases,while NiI_(2)monolayer blueshifts.Accurate computation of the MOKE spectrum of NiX_(2)materials provides an opportunity for applications of 2D magnetic material ranging from sensing to data storing. 展开更多
关键词 magneto-optical Kerr effect(MOKE) first-principles calculations external magnetic field out-of-plane strain
下载PDF
Elliptically polarized high-order harmonic generation of Ar atom in an intense laser field
13
作者 胡杰 王一琛 +6 位作者 景秋霜 姜威 王革文 赵逸文 肖礴 梁红静 马日 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期453-457,共5页
High-order harmonic generation(HHG) of Ar atom in an elliptically polarized intense laser field is experimentally investigated in this work.Interestingly,the anomalous ellipticity dependence on the laser ellipticity(... High-order harmonic generation(HHG) of Ar atom in an elliptically polarized intense laser field is experimentally investigated in this work.Interestingly,the anomalous ellipticity dependence on the laser ellipticity(ε) in the lower-order harmonics is observed,specifically in the 13rd-order,which displays a maximal harmonic intensity at ε ≈ 0.1,rather than at ε = 0 as expected.This contradicts the general trend of harmonic yield,which typically decreases with the increase of laser ellipticity.In this study,we attribute this phenomenon to the disruption of the symmetry of the wave function by the Coulomb effect,leading to the generation of a harmonic with high ellipticity.This finding provides valuable insights into the behavior of elliptically polarized harmonics and opens up a potential way for exploring new applications in ultrafast spectroscopy and light–matter interactions. 展开更多
关键词 high-order harmonic generation Coulomb effect elliptically polarized intense laser field
下载PDF
Design and Implementation of a High-Sensitivity Magnetic Sensing System Based on GMI Effect
14
作者 Wenzhu Wu Ming Xu +4 位作者 Changlin Han Junquan Tang Jia Xu Lin Xu Mingxin Qin 《Journal of Beijing Institute of Technology》 EI CAS 2024年第3期237-247,共11页
A high-sensitivity magnetic sensing system based on giant magneto-impedance(GMI)effect is designed and fabricated.The system comprises a GMI sensor equipped with a gradient probe and an signal acquisition and processi... A high-sensitivity magnetic sensing system based on giant magneto-impedance(GMI)effect is designed and fabricated.The system comprises a GMI sensor equipped with a gradient probe and an signal acquisition and processing module.A segmented superposition algorithm is used to increase target signal and reduce the random noise.The results show that under unshielded,room temperature conditions,the system achieves successful detection of weak magnetic fields down to 2 pT with a notable sensitivity of 1.84×10^(8)V/T(G=1000).By applying 17 overlays,the segmented superposition algorithm increases the power proportion of the target signal at 31 Hz from6.89%to 45.91%,surpassing the power proportion of the 2 Hz low-frequency interference signal.Simultaneously,it reduces the power proportion of the 20 Hz random noise.The segmented superposition process effectively cancels out certain random noise elements,leading to a reduction in their respective power proportions.This high-sensitivity magnetic sensing system features a simple structure,and is easy to operate,making it highly valuable for both practical applications and broader dissemination. 展开更多
关键词 HIGH-SENSITIVITY magnetic field sensing system GMI effect segmented superposition algorithm
下载PDF
Oscillation of Dzyaloshinskii–Moriya interaction driven by weak electric fields
15
作者 陈润泽 曹安妮 +3 位作者 王馨苒 柳洋 杨洪新 赵巍胜 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期487-491,共5页
Dzyaloshinskii–Moriya interaction(DMI) is under extensive investigation considering its crucial status in chiral magnetic orders, such as Néel-type domain wall(DW) and skyrmions. It has been reported that the in... Dzyaloshinskii–Moriya interaction(DMI) is under extensive investigation considering its crucial status in chiral magnetic orders, such as Néel-type domain wall(DW) and skyrmions. It has been reported that the interfacial DMI originating from Rashba spin–orbit coupling(SOC) can be linearly tuned with strong external electric fields. In this work, we experimentally demonstrate that the strength of DMI exhibits rapid fluctuations, ranging from 10% to 30% of its original value, as a function of applied electric fields in Pt/Co/MgO heterostructures within the small field regime(< 10-2V/nm). Brillouin light scattering(BLS) experiments have been performed to measure DMI, and first-principles calculations show agreement with this observation, which can be explained by the variation in orbital hybridization at the Co/MgO interface in response to the weak electric fields. Our results on voltage control of DMI(VCDMI) suggest that research related to the voltage control of magnetic anisotropy for spin–orbit torque or the motion control of skyrmions might also have to consider the role of the external electric field on DMI as small voltages are generally used for the magnetoresistance detection. 展开更多
关键词 Dzyaloshinskii-Moriya interaction weak electric field control effect Rashba spin-orbit coupling interfacial orbital hybridization
下载PDF
Effect of boundary conditions on shakedown analysis of heterogeneous materials
16
作者 Xiuchen GONG Yinghao NIE +1 位作者 Gengdong CHENG Kai LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第1期39-68,共30页
The determination of the ultimate load-bearing capacity of structures made of elastoplastic heterogeneous materials under varying loads is of great importance for engineering analysis and design. Therefore, it is nece... The determination of the ultimate load-bearing capacity of structures made of elastoplastic heterogeneous materials under varying loads is of great importance for engineering analysis and design. Therefore, it is necessary to accurately predict the shakedown domains of these materials. The static shakedown theorem, also known as Melan's theorem, is a fundamental method used to predict the shakedown domains of structures and materials. Within this method, a key aspect lies in the construction and application of an appropriate self-equilibrium stress field(SSF). In the structural shakedown analysis, the SSF is typically constructed by governing equations that satisfy no external force(NEF) boundary conditions. However, we discover that directly applying these governing equations is not suitable for the shakedown analysis of heterogeneous materials. Researchers must consider the requirements imposed by the Hill-Mandel condition for boundary conditions and the physical significance of representative volume elements(RVEs). This paper addresses this issue and demonstrates that the sizes of SSFs vary under different boundary conditions, such as uniform displacement boundary conditions(DBCs), uniform traction boundary conditions(TBCs), and periodic boundary conditions(PBCs). As a result, significant discrepancies arise in the predicted shakedown domain sizes of heterogeneous materials. Built on the demonstrated relationship between SSFs under different boundary conditions, this study explores the conservative relationships among different shakedown domains, and provides proof of the relationship between the elastic limit(EL) factors and the shakedown loading factors under the loading domain of two load vertices. By utilizing numerical examples, we highlight the conservatism present in certain results reported in the existing literature. Among the investigated boundary conditions, the obtained shakedown domain is the most conservative under TBCs.Conversely, utilizing PBCs to construct an SSF for the shakedown analysis leads to less conservative lower bounds, indicating that PBCs should be employed as the preferred boundary conditions for the shakedown analysis of heterogeneous materials. 展开更多
关键词 heterogeneous material self-equilibrium stress field(SSF) shakedown analysis effect of boundary conditions
下载PDF
The action mechanism of the work done by the electric field force on moving charges to stimulate the emergence of carrier generation/recombination in a PN junction
17
作者 Lingyun GUO Yizhan YANG +1 位作者 Wanli YANG Yuantai HU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第6期1001-1014,共14页
It is discovered that the product of the current and the electric field in a PN junction should be regarded as the rate of work(power)done by the electric field force on moving charges(hole current and electron curren... It is discovered that the product of the current and the electric field in a PN junction should be regarded as the rate of work(power)done by the electric field force on moving charges(hole current and electron current),which was previously misinterpreted as solely a Joule heating effect.We clarify that it is exactly the work done by the electric field force on the moving charges to stimulate the emergence of non-equilibrium carriers,which triggers the novel physical phenomena.As regards to Joule heat,we point out that it should be calculated from Ohm’s law,rather than simply from the product of the current and the electric field.Based on this understanding,we conduct thorough discussion on the role of the electric field force in the process of carrier recombination and carrier generation.The thermal effects of carrier recombination and carrier generation followed are incorporated into the thermal equation of energy.The present study shows that the exothermic effect of carrier recombination leads to a temperature rise at the PN interface,while the endothermic effect of carrier generation causes a temperature reduction at the interface.These two opposite effects cause opposite heat flow directions in the PN junction under forward and backward bias voltages,highlighting the significance of managing device heating phenomena in design considerations.Therefore,this study possesses referential significance for the design and tuning on the performance of piezotronic devices. 展开更多
关键词 piezoelectric semiconductor(PS) work done by electric field force thermal effect piezotronic device resistivity conductivity
下载PDF
Two-dimensional investigation of characteristic parameters and their gradients for the self-generated electric and magnetic fields of laser-induced zirconium plasma
18
作者 Tayyaba SAJID Shazia BASHIR +2 位作者 Mahreen AKRAM Maira RAZZAQ Khaliq MAHMOOD 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第5期138-155,共18页
Two-dimensional diagnosis of laser-induced zirconium(Zr)plasma has been experimentally performed using the time-of-flight method by employing Faraday cups in addition to electric and magnetic probes.The characteristic... Two-dimensional diagnosis of laser-induced zirconium(Zr)plasma has been experimentally performed using the time-of-flight method by employing Faraday cups in addition to electric and magnetic probes.The characteristic parameters of laser-induced Zr plasma have been evaluated as a function of different laser irradiances ranging from 4.5 to 11.7 GW cm-2 at different axial positions of 1–4 cm with a fixed radial distance of 2 cm.A well-supporting correlation between the plume parameters and the laser-plasma-produced spontaneous electric and magnetic(E and B)fields was established.The measurements of the characteristic parameters and spontaneously induced fields were observed to have an increasing trend with the increasing laser irradiance.However,when increasing the spatial distance in both the axial and radial directions,the plasma parameters(electron/ion number density,temperature and kinetic energy)did not show either continuously increasing or decreasing trends due to various kinetic and dynamic processes during the spatial evolution of the plume.However,the E and B fields were observed to be always diffusing away from the target.The radial component of electron number densities remained higher than the axial number density component,whereas the axial ion number density at all laser irradiances and axial distances remained higher than the radial ion number density.The higher axial self-generated electric field(SGEF)values than radial SGEF values are correlated with the effective charge-separation mechanism of electrons and ions.The generation of a self-generated magnetic field is observed dominantly in the radial direction at increasing laser irradiance as compared to the axial one due to the deflection of fast-moving electrons and the persistence of two-electron temperature on the radial axis. 展开更多
关键词 Faraday cup axial and radial expansion space-charge effect laser-induced zirconium plasma two-electron temperature distribution self-generated electric and magnetic fields
下载PDF
Research on Total Electric Field Prediction Method of Ultra-High Voltage Direct Current Transmission Line Based on Stacking Algorithm
19
作者 Yinkong Wei Mucong Wu +3 位作者 Wei Wei Paulo R.F.Rocha Ziyi Cheng Weifang Yao 《Computer Systems Science & Engineering》 2024年第3期723-738,共16页
Ultra-high voltage(UHV)transmission lines are an important part of China’s power grid and are often surrounded by a complex electromagnetic environment.The ground total electric field is considered a main electromagn... Ultra-high voltage(UHV)transmission lines are an important part of China’s power grid and are often surrounded by a complex electromagnetic environment.The ground total electric field is considered a main electromagnetic environment indicator of UHV transmission lines and is currently employed for reliable long-term operation of the power grid.Yet,the accurate prediction of the ground total electric field remains a technical challenge.In this work,we collected the total electric field data from the Ningdong-Zhejiang±800 kV UHVDC transmission project,as of the Ling Shao line,and perform an outlier analysis of the total electric field data.We show that the Local Outlier Factor(LOF)elimination algorithm has a small average difference and overcomes the performance of Density-Based Spatial Clustering of Applications with Noise(DBSCAN)and Isolated Forest elimination algorithms.Moreover,the Stacking algorithm has been found to have superior prediction accuracy than a variety of similar prediction algorithms,including the traditional finite element.The low prediction error of the Stacking algorithm highlights the superior ability to accurately forecast the ground total electric field of UHVDC transmission lines. 展开更多
关键词 DC transmission line total electric field effective data multivariable outliers LOF algorithm Stacking algorithm
下载PDF
VSe_(2)/V_(2)C heterocatalyst with built-in electric field for efficient lithium-sulfur batteries:Remedies polysulfide shuttle and conversion kinetics
20
作者 Yanwei Lv Lina Bai +7 位作者 Qi Jin Siyu Deng Xinzhi Ma Fengfeng Han Juan Wang Lirong Zhang Lili Wu Xitian Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期397-409,I0010,共14页
Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriou... Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriously hinders the commercialization of Li-S batteries.Herein,a unique VSe_(2)/V_(2)C heterostructure with local built-in electric field was rationally engineered from V_(2)C parent via a facile thermal selenization process.It exquisitely synergizes the strong affinity of V_(2)C with the effective electrocatalytic activity of VSe_(2).More importantly,the local built-in electric field at the heterointerface can sufficiently promote the electron/ion transport ability and eventually boost the conversion kinetics of sulfur species.The Li-S battery equipped with VSe_(2)/V_(2)C-CNTs-PP separator achieved an outstanding initial specific capacity of 1439.1 m A h g^(-1)with a high capacity retention of 73%after 100 cycles at0.1 C.More impressively,a wonderful capacity of 571.6 mA h g^(-1)was effectively maintained after 600cycles at 2 C with a capacity decay rate of 0.07%.Even under a sulfur loading of 4.8 mg cm^(-2),areal capacity still can be up to 5.6 m A h cm^(-2).In-situ Raman tests explicitly illustrate the effectiveness of VSe_(2)/V_(2)C-CNTs modifier in restricting Li PSs shuttle.Combined with density functional theory calculations,the underlying mechanism of VSe_(2)/V_(2)C heterostructure for remedying Li PSs shuttling and conversion kinetics was deciphered.The strategy of constructing VSe_(2)/V_(2)C heterocatalyst in this work proposes a universal protocol to design metal selenide-based separator modifier for Li-S battery.Besides,it opens an efficient avenue for the separator engineering of Li-S batteries. 展开更多
关键词 Li-S battery Shuttle effect Separator modifier VSe_(2)/V_(2)C heterostructure Built-in electric field
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部