This work focuses on the development of carpets from sand, fabrics of cotton fiber and mosquito nets and rubber latex. Following a study on the choice of the best formulations, the quantity of rubber latex used for sh...This work focuses on the development of carpets from sand, fabrics of cotton fiber and mosquito nets and rubber latex. Following a study on the choice of the best formulations, the quantity of rubber latex used for shaping varies between 14% and 18% (latex/sand + latex ratio) for the carpet with the fabric of mosquito nets and between 16% and 18% for the one made with the fabric of cotton fiber. Thus, with a mixture of sand, fiber fabrics (cotton and mosquito nets) and rubber latex, carpets were developed. In addition, the wear test carried out on these samples indicates that it is possible to produce carpets with the new material made of rubber sand and latex: SABLATEX At room temperature. Following the characterization test, it resorts to only 16% latex with cotton fiber fabric, allowing to have carpets with good mechanical characteristics.展开更多
The pyrolytic carbon (PyC) coatings were fabricated on A1203 fiber fabrics by the method of chemical vapor deposition (CVD). The microstructures of A1203 fibers with and without PyC coatings were characterized by ...The pyrolytic carbon (PyC) coatings were fabricated on A1203 fiber fabrics by the method of chemical vapor deposition (CVD). The microstructures of A1203 fibers with and without PyC coatings were characterized by SEM and Raman spectroscopy. The influence of deposition time of PyC on the DC conductivity (ad) of A1203 filaments and complex permittivity of fabrics at X band (8.2-12.4 GHz) were investigated. The values of Crd and complex permittivity increase with increasing deposition time of PyC. The electron relaxation polarization and conductance loss were supposed to be contributed to the increase of ε' and ε", respectively. In addition, the reflection loss (RL) of fabrics was calculated. The results show that the microwave absorbing properties of Al2O3 fiber fabrics can be improved by PyC coatings. The best RL results are for 60 min-deposition sample, of which the minimum value is about -40.4 dB at about 9.5 GHz and the absorbing frequency band (AFB) is about 4 GHz.展开更多
Generally,the practical capacity of an electrode should include the weight of non-active components such as current collector,polymer binder,and conductive additives,which were as high as 70 wt%in current reported wor...Generally,the practical capacity of an electrode should include the weight of non-active components such as current collector,polymer binder,and conductive additives,which were as high as 70 wt%in current reported works,seriously limiting the practical capacity.This work pioneered the usage of ultralight reduced graphene fiber(rGF)fabrics as conductive scaffolds,aiming to reduce the weight of nonactive components and enhance the practical capacity.Ultrathin SnS2 nanosheets/rGF hybrids were prepared and used as binder-free electrodes of sodium-ion batteries(SIBs).The interfused graphene fibers endow the electrode a porous,continuous,and conductive network.The in situ phase transformation from SnO2 to SnS2 could preserve the strong interfacial interactions between SnS2 and graphene.Benefitting from these,the designed binder-free electrode delivers a high specific capacity of 500 mAh g?1 after 500 cycles at a current rate of 0.5 A g?1 with almost 100%Coulombic efficiency.Furthermore,the weight percentage of SnS2 in the whole electrode could reach up to 67.2 wt%,much higher than that of common electrode configurations using Cu foil,Al foil,or carbon cloth,significantly highlighting the ultralight characters and advantages of the rGF fabrics for using as binder-free electrodes of SIBs.展开更多
The femtosecond laser has emerged as a powerful tool for micro-and nanoscale device fabrication. Through nonlinear ionization processes, nanometer-sized material modifications can be inscribed in transparent materials...The femtosecond laser has emerged as a powerful tool for micro-and nanoscale device fabrication. Through nonlinear ionization processes, nanometer-sized material modifications can be inscribed in transparent materials for device fabrication. This paper describes femtosecond precision inscription of nanograting in silica fiber cores to form both distributed and point fiber sensors for sensing applications in extreme environmental conditions. Through the use of scanning electron microscope imaging and laser processing optimization,high-temperature stable, Type II femtosecond laser modifications were continuously inscribed,point by point, with only an insertion loss at 1 d B m~(-1) or 0.001 d B per point sensor device.High-temperature performance of fiber sensors was tested at 1000℃, which showed a temperature fluctuation of ±5.5℃ over 5 days. The low laser-induced insertion loss in optical fibers enabled the fabrication of a 1.4 m, radiation-resilient distributed fiber sensor. The in-pile testing of the distributed fiber sensor further showed that fiber sensors can execute stable and distributed temperature measurements in extreme radiation environments. Overall, this paper demonstrates that femtosecond-laser-fabricated fiber sensors are suitable measurement devices for applications in extreme environments.展开更多
We fabricate the Tm-doped double cladding silica fiber by using the vapor-solution hybrid-doping method, then build up an all-fiber Tin-doped fiber laser which can provide the output power of up to 121 W, correspondin...We fabricate the Tm-doped double cladding silica fiber by using the vapor-solution hybrid-doping method, then build up an all-fiber Tin-doped fiber laser which can provide the output power of up to 121 W, corresponding to a slope efficiency of 51% and an optical-optical efficiency of 48%. By using the domestic Tin-doped fiber, it is the first time a hundred-watt level output at 1915nm has been achieved, to the best of our knowledge. The thermal effect of Tm-doped fiber laser is also analyzed.展开更多
Two kinds of 2.5D deep straight-joint structure ultra-high molecular weight polyethylene(UHMWPE)(twisted and original) fibers woven fabric reinforced epoxy resin composites were prepared by the hand lay-up method....Two kinds of 2.5D deep straight-joint structure ultra-high molecular weight polyethylene(UHMWPE)(twisted and original) fibers woven fabric reinforced epoxy resin composites were prepared by the hand lay-up method. Subsequently, the flexural property, microstructures, and failure mechanisms of the composites were also investigated. The average flexural strength of 2.5D deep bend-joint structure twisted fiber and original fiber woven fabric composites were 176.66 MPa and 204.45 MPa, respectively. The results of the characteristics indicated that the twist was the main factor which affected the flexural performance. Flexural property vitally relied on the strength of the fiber itself. Twist decreased the strength of the yarns, which meant that when the mechanical property of woven fabric reinforced composites was improved, the yarns must be kept straight in the woven fabric. The study are extremely valuable to guide the improvement of the mechanical property of the woven fabric reinforced composites.展开更多
Adsorption capacity of ACFF in cyanide leaching liquor of gold ores was studied with cyanide leaching liquor of gold ores, containing various kinds of ions. The adsorbed leaching liquor was analyzed by atomic emission...Adsorption capacity of ACFF in cyanide leaching liquor of gold ores was studied with cyanide leaching liquor of gold ores, containing various kinds of ions. The adsorbed leaching liquor was analyzed by atomic emission spectroscopy and colorimetric method. The contents of various kinds of ions in ACFF were determined with X-ray photoctron spectroscopy. ACFF not only adsorbed gold but also adsorbed arsenic, nickel, zinc, calcium, sulphur, bismuth, copper, iron, silver and cyanide anion. Atomic percentage of C and those of O, N, Zn, Fe increase and decrease respectively with the increase of the layer depth, while those of Ca, Au, Ag keep constant.展开更多
Micrometer NbC_x-C three-dimensional netted fibers were synthesized by thecarbothermal method under 0.1 MPa of N_2 ambient atmosphere at a relatively low temperature. Rawmaterials were commercial powders of Nb_2O_5 (9...Micrometer NbC_x-C three-dimensional netted fibers were synthesized by thecarbothermal method under 0.1 MPa of N_2 ambient atmosphere at a relatively low temperature. Rawmaterials were commercial powders of Nb_2O_5 (99.95 percent), reactive carbon (99.99 percent), NaCl(99.95 percent) and sucrose (99.94 percent). The relationship of the fabrication processing with thecomposition, crystal structure and morphology of fibers was investigated. The formation mechanismwas also proposed and discussed.展开更多
Described here are the fabrication and characterization of carbon fiber cylinder ultramicroelectrodes with cylinder length of less than 100 am, total tip diameter of several hundreds nanometers. The electrodes have be...Described here are the fabrication and characterization of carbon fiber cylinder ultramicroelectrodes with cylinder length of less than 100 am, total tip diameter of several hundreds nanometers. The electrodes have been fabricated by direct etching of carbon fiber using an ion beam thinner. Optical microscopy, scanning electron microscopy (SEM), cyclic voltammetry have been employed to characterize those electrodes. The experimental results obtained indicate the electrodes can be used for in vivo detection of neurotransmitters such as dopamine, 5—hydroxytryptamine in a single cell.展开更多
The fast and high response detection of neurotoxic H_(2)S is of great importance for the environment.In this paper,directly electrospinning technology on the ceramic tube is developed to improve the response of H_(2)S...The fast and high response detection of neurotoxic H_(2)S is of great importance for the environment.In this paper,directly electrospinning technology on the ceramic tube is developed to improve the response of H_(2)S detector based on superlong SnO_(2)fibers.The submillimeter continuous fibers are deposited directly on ceramic tubes by in-situ electrospinning method and can keep morphology of fibers during calcination.By employing this technology,CuO-doped SnO_(2)fiber H_(2)S detectors are fabricated,and 10%atom CuO-doped SnO_(2)H_(2)S detector shows the highest response of 40 toward 1 ppm H_(2)S at 150℃while the response is only 3.6 for the H_(2)S detector prepared in traditional route.In addition,the in-situ electrospinning H_(2)S detectors show faster response and recovery compared to the H_(2)S detectors fabricated by the conventional way.The high and fast response of H_(2)S detectors based on in-situ electrospinning can be ascribed to the continuous fiber structure and CuO modification.The present in-situ electrospinning technology may provide a new strategy for the development of other gasdetectors and bio-detectors with fast and high response.展开更多
As a new type optical fiber,because of its particular optical properties,photonic crystal fibers(PCFs) have attracted the academic and industrial field widespread attention.So,the researches about PCFs have made great...As a new type optical fiber,because of its particular optical properties,photonic crystal fibers(PCFs) have attracted the academic and industrial field widespread attention.So,the researches about PCFs have made great progress in recent decade.In this paper,two kinds of PCFs constructions are numerically investigated and its leakage-loss properties are simulated.Based on the results of calculations,both the two types of PCFs are fabricated using glass capillary tube stacking.And the process of fiber drawing is described in this paper.展开更多
Electrocoagulation is progressively becoming an ecologically friendly water treatment method owing to its lack of secondary pollution,high active ingredient concentration,high treatment effectiveness,simple equipment,...Electrocoagulation is progressively becoming an ecologically friendly water treatment method owing to its lack of secondary pollution,high active ingredient concentration,high treatment effectiveness,simple equipment,and simplicity of automated control implementation.Herein,electrocoagulation is offered as a method for treating wastewater containing azo dyes using a revolutionary flexible electronic fabric that can be mass-producible at a reasonable price.A computer-controlled machine embroiders 316L stainless steel fiber(316L SSF)onto an insulating fabric to manufacture a flexible electronic device of cathode and anode with a monopolar arrangement on the fabric surface.Using methyl orange(MO)solution to simulate azo dye wastewater,the decolorization rate of 500 ml MO reached 99.25% under the conditions of 50 mg·L^(-1)initial mass concentration,120 min electrolysis time,15 mA·g^(-1)current density,1 cm electrode spacing,0.1 mol·L^(-1)NaCl,pH 7.6,200 r·min^(-1)rotational speed of the stirrer,and 22-25℃ room temperature.In addition,it is feasible to embroider flexible electronic fabrics with varied sizes and numbers of electrodes based on the amount of treated sewage to increase the degradation rate,which has significant practical application value.展开更多
Composite fabrics based on Polytetrafluoroethylene(PTFE)polymer displays several notable properties.They are waterproof,windproof,permeable to moisture and thermally insulating at the same time.In the present study,PT...Composite fabrics based on Polytetrafluoroethylene(PTFE)polymer displays several notable properties.They are waterproof,windproof,permeable to moisture and thermally insulating at the same time.In the present study,PTFE fibers are used as raw material to make fiber membranes.The film is formed by crisscrossing interconnected fiber filaments and the related air permeability:tensile creep characteristics and other properties are tested.The results show that the pore size,thickness,and porosity of the film itself can affect the moisture permeability of the film.The water pressure resistance of the selected fabric is 8.5 kPa,and the moisture permeability is 7038 g/(m^(2)·24 h).展开更多
Through the silver fiber and cotton mixed silver fiber shielding fabric,not only soft and comfortable,it can wear personal,but also has excellent anti electromagnetic shielding effect. Fabric in dyeing and finishing p...Through the silver fiber and cotton mixed silver fiber shielding fabric,not only soft and comfortable,it can wear personal,but also has excellent anti electromagnetic shielding effect. Fabric in dyeing and finishing process,may cause some damage on the silver fiber,influence the shielding performance of shielding fabric. Therefore,in this paper,through the experimental and analysis,find dyeing and finishing process may affect silver fiber shielding fabric and the reasons.展开更多
文摘This work focuses on the development of carpets from sand, fabrics of cotton fiber and mosquito nets and rubber latex. Following a study on the choice of the best formulations, the quantity of rubber latex used for shaping varies between 14% and 18% (latex/sand + latex ratio) for the carpet with the fabric of mosquito nets and between 16% and 18% for the one made with the fabric of cotton fiber. Thus, with a mixture of sand, fiber fabrics (cotton and mosquito nets) and rubber latex, carpets were developed. In addition, the wear test carried out on these samples indicates that it is possible to produce carpets with the new material made of rubber sand and latex: SABLATEX At room temperature. Following the characterization test, it resorts to only 16% latex with cotton fiber fabric, allowing to have carpets with good mechanical characteristics.
基金Project (51072165) supported by the National Natural Science Foundation of ChinaProject (KP200901) supported by the Fund of the State Key Laboratory of Solidification Processing,China
文摘The pyrolytic carbon (PyC) coatings were fabricated on A1203 fiber fabrics by the method of chemical vapor deposition (CVD). The microstructures of A1203 fibers with and without PyC coatings were characterized by SEM and Raman spectroscopy. The influence of deposition time of PyC on the DC conductivity (ad) of A1203 filaments and complex permittivity of fabrics at X band (8.2-12.4 GHz) were investigated. The values of Crd and complex permittivity increase with increasing deposition time of PyC. The electron relaxation polarization and conductance loss were supposed to be contributed to the increase of ε' and ε", respectively. In addition, the reflection loss (RL) of fabrics was calculated. The results show that the microwave absorbing properties of Al2O3 fiber fabrics can be improved by PyC coatings. The best RL results are for 60 min-deposition sample, of which the minimum value is about -40.4 dB at about 9.5 GHz and the absorbing frequency band (AFB) is about 4 GHz.
基金financially supported by the National Natural Science Foundation of China(Nos.21503025,21503178 and 21603019)Fundamental Research Funds for the Central Universities(Nos.0903005203377 and 106112016CDJZR325520)+3 种基金Key Program for International Science and Technology Cooperation Projects of Ministry of Science and Technology of China(No.2016YFE0125900)Venture and Innovation Support Program for Chongqing Overseas Returnees(cx2017060 and cx2017115)Chongqing Research Program of Basic Research and Frontier Technology(No.cstc2016jcyjA1059)Hundred Talents Program of Chongqing University.
文摘Generally,the practical capacity of an electrode should include the weight of non-active components such as current collector,polymer binder,and conductive additives,which were as high as 70 wt%in current reported works,seriously limiting the practical capacity.This work pioneered the usage of ultralight reduced graphene fiber(rGF)fabrics as conductive scaffolds,aiming to reduce the weight of nonactive components and enhance the practical capacity.Ultrathin SnS2 nanosheets/rGF hybrids were prepared and used as binder-free electrodes of sodium-ion batteries(SIBs).The interfused graphene fibers endow the electrode a porous,continuous,and conductive network.The in situ phase transformation from SnO2 to SnS2 could preserve the strong interfacial interactions between SnS2 and graphene.Benefitting from these,the designed binder-free electrode delivers a high specific capacity of 500 mAh g?1 after 500 cycles at a current rate of 0.5 A g?1 with almost 100%Coulombic efficiency.Furthermore,the weight percentage of SnS2 in the whole electrode could reach up to 67.2 wt%,much higher than that of common electrode configurations using Cu foil,Al foil,or carbon cloth,significantly highlighting the ultralight characters and advantages of the rGF fabrics for using as binder-free electrodes of SIBs.
基金supported in part through Department of Energy Grants DE-NE0008686 and DE-FE00028992the NEET ASI program under DOE Idaho Operations Office Contract DE-AC07-05ID14517。
文摘The femtosecond laser has emerged as a powerful tool for micro-and nanoscale device fabrication. Through nonlinear ionization processes, nanometer-sized material modifications can be inscribed in transparent materials for device fabrication. This paper describes femtosecond precision inscription of nanograting in silica fiber cores to form both distributed and point fiber sensors for sensing applications in extreme environmental conditions. Through the use of scanning electron microscope imaging and laser processing optimization,high-temperature stable, Type II femtosecond laser modifications were continuously inscribed,point by point, with only an insertion loss at 1 d B m~(-1) or 0.001 d B per point sensor device.High-temperature performance of fiber sensors was tested at 1000℃, which showed a temperature fluctuation of ±5.5℃ over 5 days. The low laser-induced insertion loss in optical fibers enabled the fabrication of a 1.4 m, radiation-resilient distributed fiber sensor. The in-pile testing of the distributed fiber sensor further showed that fiber sensors can execute stable and distributed temperature measurements in extreme radiation environments. Overall, this paper demonstrates that femtosecond-laser-fabricated fiber sensors are suitable measurement devices for applications in extreme environments.
基金Supported by the National High-Technology Research and Development Program of China under Grant No 2013AA031501the National Natural Science Foundation of China for Director Fund of WNLO
文摘We fabricate the Tm-doped double cladding silica fiber by using the vapor-solution hybrid-doping method, then build up an all-fiber Tin-doped fiber laser which can provide the output power of up to 121 W, corresponding to a slope efficiency of 51% and an optical-optical efficiency of 48%. By using the domestic Tin-doped fiber, it is the first time a hundred-watt level output at 1915nm has been achieved, to the best of our knowledge. The thermal effect of Tm-doped fiber laser is also analyzed.
基金Funded by the National Natural Science Foundation of China(No.51001117)
文摘Two kinds of 2.5D deep straight-joint structure ultra-high molecular weight polyethylene(UHMWPE)(twisted and original) fibers woven fabric reinforced epoxy resin composites were prepared by the hand lay-up method. Subsequently, the flexural property, microstructures, and failure mechanisms of the composites were also investigated. The average flexural strength of 2.5D deep bend-joint structure twisted fiber and original fiber woven fabric composites were 176.66 MPa and 204.45 MPa, respectively. The results of the characteristics indicated that the twist was the main factor which affected the flexural performance. Flexural property vitally relied on the strength of the fiber itself. Twist decreased the strength of the yarns, which meant that when the mechanical property of woven fabric reinforced composites was improved, the yarns must be kept straight in the woven fabric. The study are extremely valuable to guide the improvement of the mechanical property of the woven fabric reinforced composites.
文摘Adsorption capacity of ACFF in cyanide leaching liquor of gold ores was studied with cyanide leaching liquor of gold ores, containing various kinds of ions. The adsorbed leaching liquor was analyzed by atomic emission spectroscopy and colorimetric method. The contents of various kinds of ions in ACFF were determined with X-ray photoctron spectroscopy. ACFF not only adsorbed gold but also adsorbed arsenic, nickel, zinc, calcium, sulphur, bismuth, copper, iron, silver and cyanide anion. Atomic percentage of C and those of O, N, Zn, Fe increase and decrease respectively with the increase of the layer depth, while those of Ca, Au, Ag keep constant.
基金This work was financially supported by the National Nature Science Foundation of China(No.59425007, No.59432033).
文摘Micrometer NbC_x-C three-dimensional netted fibers were synthesized by thecarbothermal method under 0.1 MPa of N_2 ambient atmosphere at a relatively low temperature. Rawmaterials were commercial powders of Nb_2O_5 (99.95 percent), reactive carbon (99.99 percent), NaCl(99.95 percent) and sucrose (99.94 percent). The relationship of the fabrication processing with thecomposition, crystal structure and morphology of fibers was investigated. The formation mechanismwas also proposed and discussed.
基金This project was supported by the National Science Foundation of China and Doctoral Programme from State Education Commission Foundation of China
文摘Described here are the fabrication and characterization of carbon fiber cylinder ultramicroelectrodes with cylinder length of less than 100 am, total tip diameter of several hundreds nanometers. The electrodes have been fabricated by direct etching of carbon fiber using an ion beam thinner. Optical microscopy, scanning electron microscopy (SEM), cyclic voltammetry have been employed to characterize those electrodes. The experimental results obtained indicate the electrodes can be used for in vivo detection of neurotransmitters such as dopamine, 5—hydroxytryptamine in a single cell.
基金supported by National Natural Science Foundation of China(51772082,51804106,51572078,51772086 and 51872087)。
文摘The fast and high response detection of neurotoxic H_(2)S is of great importance for the environment.In this paper,directly electrospinning technology on the ceramic tube is developed to improve the response of H_(2)S detector based on superlong SnO_(2)fibers.The submillimeter continuous fibers are deposited directly on ceramic tubes by in-situ electrospinning method and can keep morphology of fibers during calcination.By employing this technology,CuO-doped SnO_(2)fiber H_(2)S detectors are fabricated,and 10%atom CuO-doped SnO_(2)H_(2)S detector shows the highest response of 40 toward 1 ppm H_(2)S at 150℃while the response is only 3.6 for the H_(2)S detector prepared in traditional route.In addition,the in-situ electrospinning H_(2)S detectors show faster response and recovery compared to the H_(2)S detectors fabricated by the conventional way.The high and fast response of H_(2)S detectors based on in-situ electrospinning can be ascribed to the continuous fiber structure and CuO modification.The present in-situ electrospinning technology may provide a new strategy for the development of other gasdetectors and bio-detectors with fast and high response.
文摘As a new type optical fiber,because of its particular optical properties,photonic crystal fibers(PCFs) have attracted the academic and industrial field widespread attention.So,the researches about PCFs have made great progress in recent decade.In this paper,two kinds of PCFs constructions are numerically investigated and its leakage-loss properties are simulated.Based on the results of calculations,both the two types of PCFs are fabricated using glass capillary tube stacking.And the process of fiber drawing is described in this paper.
基金financial support from the National Natural Science Foundation of China(31872901)Major State Basic Research Development Program of China(2016YFA0501602)。
文摘Electrocoagulation is progressively becoming an ecologically friendly water treatment method owing to its lack of secondary pollution,high active ingredient concentration,high treatment effectiveness,simple equipment,and simplicity of automated control implementation.Herein,electrocoagulation is offered as a method for treating wastewater containing azo dyes using a revolutionary flexible electronic fabric that can be mass-producible at a reasonable price.A computer-controlled machine embroiders 316L stainless steel fiber(316L SSF)onto an insulating fabric to manufacture a flexible electronic device of cathode and anode with a monopolar arrangement on the fabric surface.Using methyl orange(MO)solution to simulate azo dye wastewater,the decolorization rate of 500 ml MO reached 99.25% under the conditions of 50 mg·L^(-1)initial mass concentration,120 min electrolysis time,15 mA·g^(-1)current density,1 cm electrode spacing,0.1 mol·L^(-1)NaCl,pH 7.6,200 r·min^(-1)rotational speed of the stirrer,and 22-25℃ room temperature.In addition,it is feasible to embroider flexible electronic fabrics with varied sizes and numbers of electrodes based on the amount of treated sewage to increase the degradation rate,which has significant practical application value.
文摘Composite fabrics based on Polytetrafluoroethylene(PTFE)polymer displays several notable properties.They are waterproof,windproof,permeable to moisture and thermally insulating at the same time.In the present study,PTFE fibers are used as raw material to make fiber membranes.The film is formed by crisscrossing interconnected fiber filaments and the related air permeability:tensile creep characteristics and other properties are tested.The results show that the pore size,thickness,and porosity of the film itself can affect the moisture permeability of the film.The water pressure resistance of the selected fabric is 8.5 kPa,and the moisture permeability is 7038 g/(m^(2)·24 h).
文摘Through the silver fiber and cotton mixed silver fiber shielding fabric,not only soft and comfortable,it can wear personal,but also has excellent anti electromagnetic shielding effect. Fabric in dyeing and finishing process,may cause some damage on the silver fiber,influence the shielding performance of shielding fabric. Therefore,in this paper,through the experimental and analysis,find dyeing and finishing process may affect silver fiber shielding fabric and the reasons.