Our previous studies on bovine serum albumin (BSA) adsorption to diethylaminoethyl dextran (DEAE dextran, DexD, grafting-ligand) and DEAE (D, surface-ligand) modified Sepharose FF resins found that all the graft...Our previous studies on bovine serum albumin (BSA) adsorption to diethylaminoethyl dextran (DEAE dextran, DexD, grafting-ligand) and DEAE (D, surface-ligand) modified Sepharose FF resins found that all the grafted resins (FF-DexD and FF-D-DexD) exhibited extremely fast uptake rate (effective diffusivity, De, De/Do 〉 1.4), which was six times greater than the ungrafted resins (De/Do 〈 0.3). In this work, the influence of ionic strength (IS) on 6 typical DEAE dextran-grafted resins was investigated. Bath adsorption equilibria and kinetics, breakthrough, and linear gradient elution experiments were conducted. Commercial DEAE Sepharose FF was used for comparison. It is found that protein adsorption capacities on DEAE dextran-FF resins and the commercial resin decreased with increasing IS, but DEAE dextran-FF resins exhibited much higher capacity sensitivity to salt concentration. Besides, steeper decrease of adsorption capacities could be obtained at higher graftingligand or surface-ligand density. It is worth noting that the facilitating role of surface-ligand to the "chain delivery" effect was weakened after adding salt, leading to the less improvement in uptake rate by increasing surface-ligand density at higher IS. Although the uptake rates of the DEAE dextran-FF resins increased first and then decreased with increasing fS, they kept the extremely high level of De values (De/Do 〉 1.1 ) at the their working/binding IS range. Moreover, the DEAE dextran-FF resin displayed much higher adsorption capacities and De values than commercial ungrafted resin in their working condition. Furthermore, the column results of DEAE dextran-FF resins presented higher dynamic binding capacities than and similar elution ISs with DEAE Sepharose FF to achieve similar (or even higher) recoveries suggest the excellent chromatographic column performance of the DEAE dextran-FF resins. Finally, both high recovery and purity of BSA and γ-globulin could be easily achieved using the typical DEAE dextran-FF column, FF-D60-DexD160, to separate their binary mixtures, by step gradient elution. The research has provided new insights into the practical application of the series of DEAE-dextran grafted resins in protein chromatography and proved their superiority.展开更多
L-phenylalanine, one of the nine essential amino acids for the human body, is extensively used as an ingredient in food, pharmaceutical and nutrition industries. A suitable equilibrium model is required for purificati...L-phenylalanine, one of the nine essential amino acids for the human body, is extensively used as an ingredient in food, pharmaceutical and nutrition industries. A suitable equilibrium model is required for purification of L-phenylalanine based on ion-exchange chromatography. In this work, the equilibrium uptake of L-phenylalanine on a strong acid-cation exchanger SH11 was investigated experimentally and theoretically. A modified Donnan ion-exchange (DIX) model, which takes the activiW into account, was established to predict the uptake of L-phenylalanine at various solution pH values. The model parameters including selectivity and mean activity coefficient in the resin phase are presented. The modified DIX model is in good agreement with the experimental data. The optimum operating pH value of 2.0, with the highest t-phenylalanine uptake on the resin, is predicted by the model. This basic information combined with the general mass transfer model will lay the foundation for the prediction of dynamic behavior of fixed bed separation process.展开更多
A method for rapid and simultaneous determination of multiple pyrrolidinium ionic liquid cations by ion chromatography with direct conductivity detection was developed.Chromatographic separations were performed on a c...A method for rapid and simultaneous determination of multiple pyrrolidinium ionic liquid cations by ion chromatography with direct conductivity detection was developed.Chromatographic separations were performed on a cation exchange column using ethylenediamine-acetonitrile as the mobile phase.The effects of chromatographic column and the mobile phase,as well as the column temperature on the retention of the cations were investigated.The retention rules of the cations under different chromatographic conditions were formulated.The retention of the cations followed the carbon number rule.The method has been successfully applied to the determination of three ionic liquids synthesized by a chemical laboratory.展开更多
A novel analytical method was developed for determining morpholinium cations lacking ultraviolet absorption groups.This determination was carried out by high performance liquid chromatographyindirect ultraviolet(HPLC...A novel analytical method was developed for determining morpholinium cations lacking ultraviolet absorption groups.This determination was carried out by high performance liquid chromatographyindirect ultraviolet(HPLC-1UV) detection using imidazolium ionic liquid as background absorption reagents,and imidazolium ionic liquid aq.soln.-organic solvent as mobile phase by a reversed-phase C18 column.The background ultraviolet absorption reagents,imidazolium ionic liquids and organic solvents were investigated.The imidazolium ionic liquid in the mobile phase is not only the background ultraviolet absorption reagent for IUV,but also an active component to improve the separation of morpholinium cations.It was found that morpholinium cations could be adequately determined when0.5 mmol/L 1-ethyl-3-methylimidazolium tetrafluoroborate aq.soln./methanol(80:20,v/v) was used as mobile phase with an IUV detection wavelength of 210 nm.In this study,the baseline separation of Nmethyl,ethylmorpholinium cations(MEMo) and N-methyl.propylmorpholinium cations(MPMo) was successfully achieved in 8.5 min.The detection limits(S/N = 3) for MEMo and MPMo were 0.15 and0.29 mg/L,respectively.This simple and practical method has been successfully applied to the determination of two morpholinium ionic liquids synthesized by the chemistry laboratory.展开更多
A temperature-controlled ionic liquid dispersive liquid-phase microextraction in combination with high performance liquid chromatography was developed for the enrichment and determination of triazine herbicides such a...A temperature-controlled ionic liquid dispersive liquid-phase microextraction in combination with high performance liquid chromatography was developed for the enrichment and determination of triazine herbicides such as cyanazine,simazine,and atrazine in water samples.1-Octyl-3-methylimidazolium hexafluorophosphate([C8MIM][PF6]) was selected as the extraction solvent.Several experimental parameters were optimized.Under the optimal conditions,the linear range for cyanazine was in the concentration range of 0.5–80 mg/L and the linear range for simazine and atrazine was in the range of1.0–100 mg/L.The limit of detection(LOD,S/N = 3) was in the ranges of 0.05–0.06 mg/L,and the intra day and inter day precision(RSDs,n = 6) was in the ranges of 3.2%–6.6% and 4.8%–8.9%,respectively.Four real water samples were analyzed with the developed method,and the experimental results showed that the spiked recoveries were satisfactory.All these exhibited that the developed method was a valuable tool for monitoring such pollutants.展开更多
基金Supported by the National Natural Science Foundation of China(21406160,21621004)
文摘Our previous studies on bovine serum albumin (BSA) adsorption to diethylaminoethyl dextran (DEAE dextran, DexD, grafting-ligand) and DEAE (D, surface-ligand) modified Sepharose FF resins found that all the grafted resins (FF-DexD and FF-D-DexD) exhibited extremely fast uptake rate (effective diffusivity, De, De/Do 〉 1.4), which was six times greater than the ungrafted resins (De/Do 〈 0.3). In this work, the influence of ionic strength (IS) on 6 typical DEAE dextran-grafted resins was investigated. Bath adsorption equilibria and kinetics, breakthrough, and linear gradient elution experiments were conducted. Commercial DEAE Sepharose FF was used for comparison. It is found that protein adsorption capacities on DEAE dextran-FF resins and the commercial resin decreased with increasing IS, but DEAE dextran-FF resins exhibited much higher capacity sensitivity to salt concentration. Besides, steeper decrease of adsorption capacities could be obtained at higher graftingligand or surface-ligand density. It is worth noting that the facilitating role of surface-ligand to the "chain delivery" effect was weakened after adding salt, leading to the less improvement in uptake rate by increasing surface-ligand density at higher IS. Although the uptake rates of the DEAE dextran-FF resins increased first and then decreased with increasing fS, they kept the extremely high level of De values (De/Do 〉 1.1 ) at the their working/binding IS range. Moreover, the DEAE dextran-FF resin displayed much higher adsorption capacities and De values than commercial ungrafted resin in their working condition. Furthermore, the column results of DEAE dextran-FF resins presented higher dynamic binding capacities than and similar elution ISs with DEAE Sepharose FF to achieve similar (or even higher) recoveries suggest the excellent chromatographic column performance of the DEAE dextran-FF resins. Finally, both high recovery and purity of BSA and γ-globulin could be easily achieved using the typical DEAE dextran-FF column, FF-D60-DexD160, to separate their binary mixtures, by step gradient elution. The research has provided new insights into the practical application of the series of DEAE-dextran grafted resins in protein chromatography and proved their superiority.
基金Supported by the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT1066)National Natural Science Foundation of China(No.21306086)Applied Basic Research Programs of Science and Technology Commission Foundation of Jiangsu Province(No.BK20151452)
文摘L-phenylalanine, one of the nine essential amino acids for the human body, is extensively used as an ingredient in food, pharmaceutical and nutrition industries. A suitable equilibrium model is required for purification of L-phenylalanine based on ion-exchange chromatography. In this work, the equilibrium uptake of L-phenylalanine on a strong acid-cation exchanger SH11 was investigated experimentally and theoretically. A modified Donnan ion-exchange (DIX) model, which takes the activiW into account, was established to predict the uptake of L-phenylalanine at various solution pH values. The model parameters including selectivity and mean activity coefficient in the resin phase are presented. The modified DIX model is in good agreement with the experimental data. The optimum operating pH value of 2.0, with the highest t-phenylalanine uptake on the resin, is predicted by the model. This basic information combined with the general mass transfer model will lay the foundation for the prediction of dynamic behavior of fixed bed separation process.
基金supported by the Natural Science Foundation of Heilongjiang Province(No.B200909)the Program for Scientific and Technological Innovation Team Construction in Universities of Heilongjiang Province(No.2011TD010)
文摘A method for rapid and simultaneous determination of multiple pyrrolidinium ionic liquid cations by ion chromatography with direct conductivity detection was developed.Chromatographic separations were performed on a cation exchange column using ethylenediamine-acetonitrile as the mobile phase.The effects of chromatographic column and the mobile phase,as well as the column temperature on the retention of the cations were investigated.The retention rules of the cations under different chromatographic conditions were formulated.The retention of the cations followed the carbon number rule.The method has been successfully applied to the determination of three ionic liquids synthesized by a chemical laboratory.
基金supported by the Natural Science Foundation of Heilongjiang Province(No.B201307)the Ministry of Education of Heilongjiang Province(No.12531192)the Program for Scientific and Technological Innovation Team Construction in Universities of Heilongjiang Province(No.2011TD010)
文摘A novel analytical method was developed for determining morpholinium cations lacking ultraviolet absorption groups.This determination was carried out by high performance liquid chromatographyindirect ultraviolet(HPLC-1UV) detection using imidazolium ionic liquid as background absorption reagents,and imidazolium ionic liquid aq.soln.-organic solvent as mobile phase by a reversed-phase C18 column.The background ultraviolet absorption reagents,imidazolium ionic liquids and organic solvents were investigated.The imidazolium ionic liquid in the mobile phase is not only the background ultraviolet absorption reagent for IUV,but also an active component to improve the separation of morpholinium cations.It was found that morpholinium cations could be adequately determined when0.5 mmol/L 1-ethyl-3-methylimidazolium tetrafluoroborate aq.soln./methanol(80:20,v/v) was used as mobile phase with an IUV detection wavelength of 210 nm.In this study,the baseline separation of Nmethyl,ethylmorpholinium cations(MEMo) and N-methyl.propylmorpholinium cations(MPMo) was successfully achieved in 8.5 min.The detection limits(S/N = 3) for MEMo and MPMo were 0.15 and0.29 mg/L,respectively.This simple and practical method has been successfully applied to the determination of two morpholinium ionic liquids synthesized by the chemistry laboratory.
基金financially supported by the National Natural Science Foundation of China (No. 21377167)Program for New Century Excellent Talents in University (No. NCET-10-0813)
文摘A temperature-controlled ionic liquid dispersive liquid-phase microextraction in combination with high performance liquid chromatography was developed for the enrichment and determination of triazine herbicides such as cyanazine,simazine,and atrazine in water samples.1-Octyl-3-methylimidazolium hexafluorophosphate([C8MIM][PF6]) was selected as the extraction solvent.Several experimental parameters were optimized.Under the optimal conditions,the linear range for cyanazine was in the concentration range of 0.5–80 mg/L and the linear range for simazine and atrazine was in the range of1.0–100 mg/L.The limit of detection(LOD,S/N = 3) was in the ranges of 0.05–0.06 mg/L,and the intra day and inter day precision(RSDs,n = 6) was in the ranges of 3.2%–6.6% and 4.8%–8.9%,respectively.Four real water samples were analyzed with the developed method,and the experimental results showed that the spiked recoveries were satisfactory.All these exhibited that the developed method was a valuable tool for monitoring such pollutants.