期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
COSMO-RS: An ionic liquid prescreening tool for gas hydrate mitigation
1
作者 Cornelius B.Bavoh Bhajan Lal +3 位作者 Omar Nashed Muhammad S.Khan Lau K.Keong Mohd.Azmi Bustam 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第11期1619-1624,共6页
Recently ionic liquids(ILs) are introduced as novel dual function gas hydrate inhibitors. However, no desired gas hydrate inhibition has been reported due to poor IL selection and/or tuning method. Trial & error a... Recently ionic liquids(ILs) are introduced as novel dual function gas hydrate inhibitors. However, no desired gas hydrate inhibition has been reported due to poor IL selection and/or tuning method. Trial & error as well as selection based on existing literature are the methods currently employed for selecting and/or tuning ILs. These methods are probabilistic, time consuming, expensive and may not result in selecting high performance ILs for gas hydrate mitigation. In this work, COSMO-RS is considered as a prescreening tool of ILs for gas hydrate mitigation by predicting the hydrogen bonding energies(E_(HB)) of studied IL inhibitors and comparing the predicted E_(HB) to the depression temperature(?) and induction time. Results show that, predicted EHBand chain length of ILs strongly relate and significantly affect the gas hydrate inhibition depression temperature but correlate moderately(R = 0.70) with average induction time in literature. It is deduced from the results that, ? increases with increasing IL EHBand/or decreases with increasing chain length. However, the cation–anion pairing of ILs also affects IL gas hydrate inhibition performance. Furthermore, a visual and better understanding of IL/water behavior for gas hydrate inhibition in terms of hydrogen bond donor and acceptor interaction analysis is also presented by determining the sigma profile and sigma potential of studied IL cations and anions used for gas hydrate mitigation for easy IL selection. 展开更多
关键词 Gas hydrates COSMO-RS hydrogen bonding energies ionic liquids Tuning
下载PDF
Hydrogen bonding mediated ion pairs of some aprotic ionic liquids and their structural transition in aqueous solution
2
作者 Huiyong Wang Miao Liu +3 位作者 Yuling Zhao Xiaopeng Xuan Yang Zhao Jianji Wang 《Science China Chemistry》 SCIE EI CAS CSCD 2017年第7期970-978,共9页
Ion pair speciation of ionic liquids(ILs) has an important effect on the physical and chemical properties of ILs and recognition of the structure of ion pairs in solution is essential. It has been reported that ion pa... Ion pair speciation of ionic liquids(ILs) has an important effect on the physical and chemical properties of ILs and recognition of the structure of ion pairs in solution is essential. It has been reported that ion pairs of some ILs can be formed by hydrogen bonding interactions between cations and anions of them. Considering the fact that far-IR(FIR) spectroscopy is a powerful tool in indicating the intermolecular and intramolecular hydrogen bonding, in this work, this spectroscopic technique has been combined with molecular dynamic(MD) simulation and nuclear magnetic resonance hydrogen spectroscopy(~1H NMR) to investigate ion pairs of aprotic ILs [Bmim][NO_3], [BuPy][NO_3], [Pyr_(14)][NO_3], [PP_(14)][NO_3] and [Bu-choline][NO_3] in aqueous IL mixtures. The FIR spectra have been assigned with the aid of density functional theory(DFT) calculations, and the results are used to understand the effect of cationic nature on the structure of ion pairs. It is found that contact ion pairs formed in the neat aprotic ILs by hydrogen bonding interactions between cation and anion, were still maintained in aqueous solutions up to high water mole fraction(say 0.80 for [BuPy][NO3]). When water content was increased to a critical mole fraction of water(say 0.83 for [BuPy][NO3]), the contact ion pairs could be transformed into solvent-separated ion pairs due to the formation of the hydrogen bonding between ions and water. With the further dilution of the aqueous ILs solution, the solvent-separated ion pairs was finally turned into free cations and free anions(fully hydrated cations or anions). The concentrations of the ILs at which the contact ion pairs were transformed into solvent-separated ion pairs and solvent-separated ion pairs were transformed into free ions(fully hydrated ion) were dependent on the cationic structures. These information provides direct spectral evidence for ion pair structures of the aprotic ILs in aqueous solution. MD simulation and ~1H NMR results support the conclusion drawn from FIR spectra investigations. 展开更多
关键词 ionic liquids ion pair hydrogen bonding far infrared spectroscopy solution
原文传递
Rapid proton diffusion in hydroxyl functionalized imidazolium ionic liquids
3
作者 Yan Li Yang Hu +2 位作者 Gang Chen Zhiyong Wang Xianbo Jin 《Science China Chemistry》 SCIE EI CAS CSCD 2017年第6期734-739,共6页
There is considerable interest in using ionic liquids(ILs) as protic electrolytes. However, the reported proton transfer rate in ILs is quite slow. In this study, we report functionalizing imidazolium ILs with alcohol... There is considerable interest in using ionic liquids(ILs) as protic electrolytes. However, the reported proton transfer rate in ILs is quite slow. In this study, we report functionalizing imidazolium ILs with alcohol hydroxyls, aiming at constructing hydrogen bonding networks in the electrolyte, can stimulate fast proton hopping transfer. For demonstration, the diffusion of proton and Cl. in 1-(3-hydroxypropyl)-3-methylimidazolium tetrafluoroboride(C_3OHmimBF_4) were studied using cyclic voltammetry and potentiostatic method at 30 °C. The diffusion coefficient of proton is about one order of magnitude higher than that of Cl. in the same electrolyte, and about 5 times that of proton in the non-hydydroxyl 1-(butyl)-3-methylimidazolium tetrafluoroboride(BmimBF_4) when normalized to the diffusion coefficients of Cl. in respective ILs. In the meantime, 1H NMR spectra revealed a strong hydrogen bonding interaction between proton and C_3OHmimBF_4 which is absent between proton and BmimBF_4, thus the significantly higher diffusion coefficient of proton in C_3OHmimBF_4 may suggest the formation of effective hydrogen bonding networks, enabling rapid proton hopping via the Grotthuss mechanism. 展开更多
关键词 ionic liquids proton transfer diffusion coefficients hydroxyl group hydrogen bonding networks
原文传递
Microscopic study of binary mixtures between pyrrolidinium bis(triflorosulfonyl)imide and dimethyl sulfoxide/acetonitrile
4
作者 Hamad Ashraf Yu Zhou +2 位作者 Jing Xu Khalil Ahmad Zhi-Wu Yu 《Science China Chemistry》 SCIE EI CAS CSCD 2016年第5期578-586,共9页
Molecular interactions of a representative pyrrolidinium-based ionic liquid 1-butyl-l-methyl-pyrrolidinium bis(triflorosulfonyl)- imide ([BMPyrr][TFSI]) with dimethyl sulfoxide (DMSO) and acetonitrile (AN) hav... Molecular interactions of a representative pyrrolidinium-based ionic liquid 1-butyl-l-methyl-pyrrolidinium bis(triflorosulfonyl)- imide ([BMPyrr][TFSI]) with dimethyl sulfoxide (DMSO) and acetonitrile (AN) have been analyzed in this work. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and density functional theory (DFT) calculations are used in the investigation, while excess infrared spectra and two-dimensional correlation spectroscopy are used to explore the data in detail. It has been found that the molecular solvents can interact with TFSI- (mainly with S=O and weakly with S-N-S group). AN interacts feebly with BMPyrr+ as compared with the strong interaction of DMSO. The strength of the interactions depends on the electron donating ability of the solvent. Upon mixing, hydrogen bonds regarding C-Hs in cation and S-N-S in anion are weakened, while that regarding S=O in anion is strengthened. Among the C-Hs which are connected directly with the N of the cation, Cl-H is the main interaction site for both DMSO and AN. This means that Cl-H is the most acidic hydrogen in pyrrolidinium cation. 展开更多
关键词 ATR-FTIR DFT calculations excess infrared spectrum two-dimensional correlation spectroscopy ionic liquid hydrogen bond
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部