Progress in the development of phenomenological models for the microscoplc interactions in the halides of polyvalent metals is reviewed, with main attention to neutral and ionized molecular states and to the melts of ...Progress in the development of phenomenological models for the microscoplc interactions in the halides of polyvalent metals is reviewed, with main attention to neutral and ionized molecular states and to the melts of these materials. The following physical problems are discussed: (1)bond bending in the molecules of the alkaline-earth halides, (2) binding of molecular dimers and halogen transfer reactions relevant to the melts of trivalent metal halides, (3) stability of molecular ions in liquid mixtures of polyvalent metal halides and alkali halides, and (4) stabilityof molecular ions and reduced-valence states in molten cryolite under addition of sodium metal.展开更多
Dynamically crosslinked materials generally lose their self-healing ability and mechanical robustness in aqueous,acidic,and basic environments due to disruption of their dynamic interactions and bonds.Herein,a micelle...Dynamically crosslinked materials generally lose their self-healing ability and mechanical robustness in aqueous,acidic,and basic environments due to disruption of their dynamic interactions and bonds.Herein,a micelle-like structure with a hydrophobic outer layer is used to protect ionic interactions.This structure ensures the self-healing and long-term stability of the ionically crosslinked elastomers in aqueous,acidic,and basic environments.The elastomer possesses a tensile strength of 6.7 MPa and a strain at break of 1400%,which is superior to the existing waterproof selfhealing elastomers.The strain sensors and dielectric actuators based on the elastomer are highly stable and self-healable,even in extremely harsh environments.This design strategy of hydrophobic protection for dynamic interactions is quite general,allowing it to be extended to other self-healing materials.展开更多
Generalized Poisson l3oltzmann equation which takes into account both ionic interaction in bulk solution and steric effects of adsorbed ions has been suggested. We found that, for inorganic cations adsorption on negat...Generalized Poisson l3oltzmann equation which takes into account both ionic interaction in bulk solution and steric effects of adsorbed ions has been suggested. We found that, for inorganic cations adsorption on negatively charged surface, the steric effect is not significant for surface charge density 〈 0.0032 C/dm2, while the ionic interaction is an important effect for electrolyte concentration 〉 0.15 tool/1 in bulk solution. We conclude that for most actual cases the original PB equation can give reliable result in describing inorganic cation adsorption.展开更多
Ionic liquids analogues known as Deep Eutectic Solvents (DESs) are gaining a surge of interest by the scientific community, and many applications involving DESs have been realized. Moisture content is one of the imp...Ionic liquids analogues known as Deep Eutectic Solvents (DESs) are gaining a surge of interest by the scientific community, and many applications involving DESs have been realized. Moisture content is one of the important factors that affects the physical and chemical characteristics of these fluids. In this work, the effect of mixing water with three common type III DESs on their viscosity was investigated within the water tool fraction range of (0-1) and at the temperature range (298.15-353.15 K). Similar trends of viscosity variation with respect to molar composition and temperature were observed for the three studied systems, Due to the asymmetric geometry of the constituting molecules in these fluids, their viscosity could not be modeled effectively by the conventional Grunberg and Nissan model, and the Fang-He model was used to address this issue with excellent performance. All studied aqueous DES mixtures showed negative deviation in viscosity as compared to ideal mixtures, The degree of intermolecular interactions with water reaches a maximum at a composition of 30% aqueous DES solution. Reline, the most studied DES in the literature, showed the highest deviation. The informa- tion presented in this work on the viscosity of aqueous DES solutions may serve in tuning this important property for diverse industrial applications involving these novel fluids in fluid flow, chemical reactions, liquid-liquid separation and many more.展开更多
Molecular interactions of the ternary mixtures of 1-butyl-3-methylimidazolium chloride ([C4C1im]Cl)-water-2,6-dimethoxyphenol (2,6-DMP, a phenolic monomer lignin model compound) were investigated in comparison wit...Molecular interactions of the ternary mixtures of 1-butyl-3-methylimidazolium chloride ([C4C1im]Cl)-water-2,6-dimethoxyphenol (2,6-DMP, a phenolic monomer lignin model compound) were investigated in comparison with the [C4C1im]Cl-water binary systems through attenuated total reflection infrared spectroscopy. Results indicated that the microstructures of water and [C4C1im]Cl changed with varying mole fraction of [C4C1im]Cl (xIL) from 0.01 to 1.0. This change was mainly attributed to the interactions of [C4C1im]Cl-water and the self-aggregation of [C4C1im]Cl through hydrogen bonding. The band shifts of C-H on imidazolium ring and the functional groups in 2,6-DMP indicated that the occurrence of intermolecular interactions by different mechanisms (i.e., hydrogen bonding or π-π stacking) resulted in 2,6-DMP dissolution. In the case of xIL=0.12, the slightly hydrogen-bonded water was fully destroyed and [C4C1im]Cl existed in the form of hydrated ion pairs. Interestingly, the maximum 2,6-DMP solubility (238.5 g/100 g) was achieved in this case. The interactions and microstructures of [C4C1im]Cl-water mixtures influenced the dissolution behavior of 2,6-DMP.展开更多
Potassium(K) and magnesium(Mg) levels and their balances are two factors affecting the growth of plant. However, the responses of different crop cultivars to K/Mg ratios are less clear. This study was aimed at assessi...Potassium(K) and magnesium(Mg) levels and their balances are two factors affecting the growth of plant. However, the responses of different crop cultivars to K/Mg ratios are less clear. This study was aimed at assessing the different responses of tomato(Solanum Lycopersicum L.) cultivars to the different K/Mg supply ratios. Three tomato cultivars(Zhongza 9(ZZ), Gailiangmaofen(MF), and Jinpengchaoguan(JP)) were grown in pots with three different K+/Mg2+ratios(4:0, 4:1 and 8:1, represented by K/Mg4:0, K/Mg4:1, and K/Mg8:1, respectively). Compared with K/Mg4:1treatment, the leaf chlorophyll content, net photosynthetic rate, and total biomass of tomato seedlings under K/Mg4:0treatments were decreased by 69.7, 89.1, and 53.1%, respectively. The Mg deficiency symptoms were observed when the Mg content in shoot became lower than 4 mg g–1DW. Compared with K/Mg4:1treatment, total biomass of tomato seedlings of K/Mg8:1treatment was decreased by 21.6%; the shoot and root Mg contents were decreased by 10.4 and 21.8%, respectively; and Mg uptake of tomato was reduced by 34.1%. There were significant differences in biomass and Mg uptake for the three cultivars between the different K+/Mg2+treatments. The Mg uptake of the three different cultivars ranked as ZZ>JP>MF under Mg deficiency and high K condition. In conclusion, the growth and Mg uptake and allocation of tomato were influenced significantly by imbalance K and Mg supply. JP and ZZ were the cultivars with the highest efficiency in Mg uptake.展开更多
The ionic conductive elastomers show great promise in multifunctional wearable electronics,but they currently suffer from liquid leakage/evaporation or mechanical compliance.Developing ionic conductive elastomers inte...The ionic conductive elastomers show great promise in multifunctional wearable electronics,but they currently suffer from liquid leakage/evaporation or mechanical compliance.Developing ionic conductive elastomers integrating non-volatility,mechanical robustness,superior ionic conductivity,and ultra-stretchability remains urgent and challenging.Here,we developed a healable,robust,and conductive elastomer via impregnating free ionic liquids(ILs)into the ILs-multigrafted poly(urethane-urea)(PUU)elastomer networks.A crucial strategy in the molecular design is that imidazolium cations are largely introduced by double-modification of PUU and centipede-like structures are obtained,which can lock the impregnated ILs through strong ionic interactions.In this system,the PUU matrix contributes outstanding mechanical properties,while the hydrogen bonds and ionic interactions endow the elastomer with self-healing ability,conductivity,as well as non-volatility and transparency.The fabricated ionic conductive elastomers show good conductivity(3.8×10^(-6) S·cm^(-1)),high mechanical properties,including tensile stress(4.64 MPa),elongation(1470%),and excellent healing ability(repairing efficiency of 90%after healing at room temperature for 12 h).Significantly,the conductive elastomers have excellent antifatigue properties,and demonstrate a highly reproducible response after 1000 uninterrupted extension-release cycles.This work provides a promising strategy to prepare ionic conductive elastomers with excellent mechanical properties and stable sensing capacity,and further promote the development of mechanically adaptable intelligent sensors.展开更多
A theory of ultrasonic generation via direct interaction of transverse optic (TO) phonons with photons in anharmonic lattice of ionic crystals is presented. There are two methods of supplying light energy for the exci...A theory of ultrasonic generation via direct interaction of transverse optic (TO) phonons with photons in anharmonic lattice of ionic crystals is presented. There are two methods of supplying light energy for the excitation of TO lattice wave as a high frequency ultrasound: (A) incident light comes from the source outside the cavity? fulfilled with ionic crystal medium, (B) photon mode of the cavity possesses the gain of amplification by stimulated radiation of active atoms doping in the medium. More attention is drawn to the case (B). The working system of case (B), as a mixture of lasing action and ultrasonic generation, has the threshold phenomena like usual laser. And the linear stability analysis shows that the nonlineax phonon-photon coupling and the interaction among phonons themselves, both of which reflect the anharmonicity of lattice vibration, are necessary to the stable ultrasonic output. So this laser-ultrasonic generation mixture would be also a measure to investigate the lattice-dynamic nonlinearity and correlated electromagnetic properties of ionic crystals.展开更多
Inorganic nanocarriers are potent candidates for delivering conventional anticancer drugs,nucleic acid-based therapeutics,and imaging agents,influencing their blood half-lives,tumor targetability,and bioactivity.In ad...Inorganic nanocarriers are potent candidates for delivering conventional anticancer drugs,nucleic acid-based therapeutics,and imaging agents,influencing their blood half-lives,tumor targetability,and bioactivity.In addition to the high surface area-to-volume ratio,they exhibit excellent scalability in synthesis,controllable shape and size,facile surface modification,inertness,stability,and unique optical and magnetic properties.However,only a limited number of inorganic nanocarriers have been so far approved for clinical applications due to burst drug release,poor target specificity,and toxicity.To overcome these barriers,understanding the principles involved in loading therapeutic and imaging molecules into these nanoparticles(NPs)and the strategies employed in enhancing sustainability and targetability of the resultant complexes and ensuring the release of the payloads in extracellular and intracellular compartments of the target site is of paramount importance.Therefore,we will shed light on various loading mechanisms harnessed for different inorganic NPs,particularly involving physical entrapment into porous/hollow nanostructures,ionic interactions with native and surface-modified NPs,covalent bonding to surface-functionalized nanomaterials,hydrophobic binding,affinity-based interactions,and intercalation through co-precipitation or anion exchange reaction.展开更多
Organic moieties-derived salts with permanent porosity and polarized channels have shown unique features and attractive performance in the field of adsorption,separation,and conduction.However,state-of-the-art organic...Organic moieties-derived salts with permanent porosity and polarized channels have shown unique features and attractive performance in the field of adsorption,separation,and conduction.However,state-of-the-art organic salts generally rely on ionic interaction and hydrogen bonding formation to maintain the porous channels.The synthesis of organic moiety-derived saltswith permanent accessible pores even after removal of the trapped guest molecules,and without the constraint of hydrogen bonding formation still remains a great challenge.Herein,we present an expeditious construction pathway to generate hierarchically nanoporous barium salts without hydrogen bonding formation.The strong ionic interaction of the bariumcation and sulfonate anions led to rapid reaction equilibrium(∼2 min),affording diverse barium-derived ionic polymer(Ba-IP)with permanent porosity and highly polarized channels.The produced Ba-IP materials with abundant cations and anions displayed high CO_(2)/N2 and CO_(2)/CH_(4)separation performance,with the selectivities reaching up to 89.5 and 280,respectively,at 273 K,surpassingmost of the organic polymers functionalized by ionic moieties.展开更多
The effects of CuCl_(2) and ZnCl_(2) on the viscosity in aqueous ethanol mixtures(10%–50%v/v)were studied in the concentration range 1.0×10^(–2)–8.0×10^(–2) mol·dm^(–3) at different temperatures.It...The effects of CuCl_(2) and ZnCl_(2) on the viscosity in aqueous ethanol mixtures(10%–50%v/v)were studied in the concentration range 1.0×10^(–2)–8.0×10^(–2) mol·dm^(–3) at different temperatures.It was found that the viscosities increased with an increase in the concentration of the salts and percent composition of ethanol content,whereas it decreased with an increase in temperature.Ion-ion and ion-solvent interactions are determined with the help of A-and B-coefficients of Jones-Dole equation.The values of A-and B-coefficients are irregular and increase with a rise in temperature and also with an increase in ethanol contents for both salts.Negative values of B-coefficients show that ion solvent interactions is comparatively small and suggest that CuCl_(2) and ZnCl_(2) behave as structure breakers in aqueous ethanol mixtures.Thermodynamic parameters like the energy of activation(Eη)and change in entropy of activation(ΔS*)were also evaluated which confirm the structure breaker behavior of salts in aqueous ethanol mixtures.展开更多
文摘Progress in the development of phenomenological models for the microscoplc interactions in the halides of polyvalent metals is reviewed, with main attention to neutral and ionized molecular states and to the melts of these materials. The following physical problems are discussed: (1)bond bending in the molecules of the alkaline-earth halides, (2) binding of molecular dimers and halogen transfer reactions relevant to the melts of trivalent metal halides, (3) stability of molecular ions in liquid mixtures of polyvalent metal halides and alkali halides, and (4) stabilityof molecular ions and reduced-valence states in molten cryolite under addition of sodium metal.
基金supported by the National Natural Science Foundation of China(51873110 and 51673120)State Key Laboratory of Polymer Materials Engineering(sklpme2019-2-14)the Fundamental Research Funds for Central Universities。
文摘Dynamically crosslinked materials generally lose their self-healing ability and mechanical robustness in aqueous,acidic,and basic environments due to disruption of their dynamic interactions and bonds.Herein,a micelle-like structure with a hydrophobic outer layer is used to protect ionic interactions.This structure ensures the self-healing and long-term stability of the ionically crosslinked elastomers in aqueous,acidic,and basic environments.The elastomer possesses a tensile strength of 6.7 MPa and a strain at break of 1400%,which is superior to the existing waterproof selfhealing elastomers.The strain sensors and dielectric actuators based on the elastomer are highly stable and self-healable,even in extremely harsh environments.This design strategy of hydrophobic protection for dynamic interactions is quite general,allowing it to be extended to other self-healing materials.
基金Supported by the National Natural Science Foundation of China under Grant Nos.40971146 and 40740420660the National Basic Research Program of China under Grant No.2010CB134511Scientific and Technological Innovation Foundation of Southwest University for Graduates under Grant No.kb2010013
文摘Generalized Poisson l3oltzmann equation which takes into account both ionic interaction in bulk solution and steric effects of adsorbed ions has been suggested. We found that, for inorganic cations adsorption on negatively charged surface, the steric effect is not significant for surface charge density 〈 0.0032 C/dm2, while the ionic interaction is an important effect for electrolyte concentration 〉 0.15 tool/1 in bulk solution. We conclude that for most actual cases the original PB equation can give reliable result in describing inorganic cation adsorption.
文摘Ionic liquids analogues known as Deep Eutectic Solvents (DESs) are gaining a surge of interest by the scientific community, and many applications involving DESs have been realized. Moisture content is one of the important factors that affects the physical and chemical characteristics of these fluids. In this work, the effect of mixing water with three common type III DESs on their viscosity was investigated within the water tool fraction range of (0-1) and at the temperature range (298.15-353.15 K). Similar trends of viscosity variation with respect to molar composition and temperature were observed for the three studied systems, Due to the asymmetric geometry of the constituting molecules in these fluids, their viscosity could not be modeled effectively by the conventional Grunberg and Nissan model, and the Fang-He model was used to address this issue with excellent performance. All studied aqueous DES mixtures showed negative deviation in viscosity as compared to ideal mixtures, The degree of intermolecular interactions with water reaches a maximum at a composition of 30% aqueous DES solution. Reline, the most studied DES in the literature, showed the highest deviation. The informa- tion presented in this work on the viscosity of aqueous DES solutions may serve in tuning this important property for diverse industrial applications involving these novel fluids in fluid flow, chemical reactions, liquid-liquid separation and many more.
基金This work was supported by the National Natural Science Foundation of China (No.21106011 and No.21276034) and the Program of Science and Technology of Liaoning Province (No.201602058), and China Scholarship Council.
文摘Molecular interactions of the ternary mixtures of 1-butyl-3-methylimidazolium chloride ([C4C1im]Cl)-water-2,6-dimethoxyphenol (2,6-DMP, a phenolic monomer lignin model compound) were investigated in comparison with the [C4C1im]Cl-water binary systems through attenuated total reflection infrared spectroscopy. Results indicated that the microstructures of water and [C4C1im]Cl changed with varying mole fraction of [C4C1im]Cl (xIL) from 0.01 to 1.0. This change was mainly attributed to the interactions of [C4C1im]Cl-water and the self-aggregation of [C4C1im]Cl through hydrogen bonding. The band shifts of C-H on imidazolium ring and the functional groups in 2,6-DMP indicated that the occurrence of intermolecular interactions by different mechanisms (i.e., hydrogen bonding or π-π stacking) resulted in 2,6-DMP dissolution. In the case of xIL=0.12, the slightly hydrogen-bonded water was fully destroyed and [C4C1im]Cl existed in the form of hydrated ion pairs. Interestingly, the maximum 2,6-DMP solubility (238.5 g/100 g) was achieved in this case. The interactions and microstructures of [C4C1im]Cl-water mixtures influenced the dissolution behavior of 2,6-DMP.
基金supported by the National Natural Science Foundation of China (41671295)the Agricultural Scientific and Technological Project in Shaanxi Province,China (2014K01-14-03)
文摘Potassium(K) and magnesium(Mg) levels and their balances are two factors affecting the growth of plant. However, the responses of different crop cultivars to K/Mg ratios are less clear. This study was aimed at assessing the different responses of tomato(Solanum Lycopersicum L.) cultivars to the different K/Mg supply ratios. Three tomato cultivars(Zhongza 9(ZZ), Gailiangmaofen(MF), and Jinpengchaoguan(JP)) were grown in pots with three different K+/Mg2+ratios(4:0, 4:1 and 8:1, represented by K/Mg4:0, K/Mg4:1, and K/Mg8:1, respectively). Compared with K/Mg4:1treatment, the leaf chlorophyll content, net photosynthetic rate, and total biomass of tomato seedlings under K/Mg4:0treatments were decreased by 69.7, 89.1, and 53.1%, respectively. The Mg deficiency symptoms were observed when the Mg content in shoot became lower than 4 mg g–1DW. Compared with K/Mg4:1treatment, total biomass of tomato seedlings of K/Mg8:1treatment was decreased by 21.6%; the shoot and root Mg contents were decreased by 10.4 and 21.8%, respectively; and Mg uptake of tomato was reduced by 34.1%. There were significant differences in biomass and Mg uptake for the three cultivars between the different K+/Mg2+treatments. The Mg uptake of the three different cultivars ranked as ZZ>JP>MF under Mg deficiency and high K condition. In conclusion, the growth and Mg uptake and allocation of tomato were influenced significantly by imbalance K and Mg supply. JP and ZZ were the cultivars with the highest efficiency in Mg uptake.
基金supported by the National Natural Science Foundation of China(Nos.22275148,52203144,and 22375162)the Key R&D Project of Shaanxi Province(Nos.2023-YBGY-489 and 2023-YBGY-474)+3 种基金the Central Government Guides Local Science and Technology Development Fund Projects(No.2022ZY2-JCYJ-01-07)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2022-JQ136)the Fundamental Research Funds for the Central Universities(No.5000210717)the Foundation(No.2019KF04)of Guangxi Key Laboratory of Clean Pulp&Papermaking and Pollution Control,College of Light Industry and Food Engineering,Guangxi University for financial support.
文摘The ionic conductive elastomers show great promise in multifunctional wearable electronics,but they currently suffer from liquid leakage/evaporation or mechanical compliance.Developing ionic conductive elastomers integrating non-volatility,mechanical robustness,superior ionic conductivity,and ultra-stretchability remains urgent and challenging.Here,we developed a healable,robust,and conductive elastomer via impregnating free ionic liquids(ILs)into the ILs-multigrafted poly(urethane-urea)(PUU)elastomer networks.A crucial strategy in the molecular design is that imidazolium cations are largely introduced by double-modification of PUU and centipede-like structures are obtained,which can lock the impregnated ILs through strong ionic interactions.In this system,the PUU matrix contributes outstanding mechanical properties,while the hydrogen bonds and ionic interactions endow the elastomer with self-healing ability,conductivity,as well as non-volatility and transparency.The fabricated ionic conductive elastomers show good conductivity(3.8×10^(-6) S·cm^(-1)),high mechanical properties,including tensile stress(4.64 MPa),elongation(1470%),and excellent healing ability(repairing efficiency of 90%after healing at room temperature for 12 h).Significantly,the conductive elastomers have excellent antifatigue properties,and demonstrate a highly reproducible response after 1000 uninterrupted extension-release cycles.This work provides a promising strategy to prepare ionic conductive elastomers with excellent mechanical properties and stable sensing capacity,and further promote the development of mechanically adaptable intelligent sensors.
基金This work is supported by the National Nature Science Foundation of China!(No. 69678003)
文摘A theory of ultrasonic generation via direct interaction of transverse optic (TO) phonons with photons in anharmonic lattice of ionic crystals is presented. There are two methods of supplying light energy for the excitation of TO lattice wave as a high frequency ultrasound: (A) incident light comes from the source outside the cavity? fulfilled with ionic crystal medium, (B) photon mode of the cavity possesses the gain of amplification by stimulated radiation of active atoms doping in the medium. More attention is drawn to the case (B). The working system of case (B), as a mixture of lasing action and ultrasonic generation, has the threshold phenomena like usual laser. And the linear stability analysis shows that the nonlineax phonon-photon coupling and the interaction among phonons themselves, both of which reflect the anharmonicity of lattice vibration, are necessary to the stable ultrasonic output. So this laser-ultrasonic generation mixture would be also a measure to investigate the lattice-dynamic nonlinearity and correlated electromagnetic properties of ionic crystals.
文摘Inorganic nanocarriers are potent candidates for delivering conventional anticancer drugs,nucleic acid-based therapeutics,and imaging agents,influencing their blood half-lives,tumor targetability,and bioactivity.In addition to the high surface area-to-volume ratio,they exhibit excellent scalability in synthesis,controllable shape and size,facile surface modification,inertness,stability,and unique optical and magnetic properties.However,only a limited number of inorganic nanocarriers have been so far approved for clinical applications due to burst drug release,poor target specificity,and toxicity.To overcome these barriers,understanding the principles involved in loading therapeutic and imaging molecules into these nanoparticles(NPs)and the strategies employed in enhancing sustainability and targetability of the resultant complexes and ensuring the release of the payloads in extracellular and intracellular compartments of the target site is of paramount importance.Therefore,we will shed light on various loading mechanisms harnessed for different inorganic NPs,particularly involving physical entrapment into porous/hollow nanostructures,ionic interactions with native and surface-modified NPs,covalent bonding to surface-functionalized nanomaterials,hydrophobic binding,affinity-based interactions,and intercalation through co-precipitation or anion exchange reaction.
基金The research was supported financially by the Division of Chemical Sciences,Geosciences,and Biosciences,Office of Basic Energy Sciences,US Department of Energy.
文摘Organic moieties-derived salts with permanent porosity and polarized channels have shown unique features and attractive performance in the field of adsorption,separation,and conduction.However,state-of-the-art organic salts generally rely on ionic interaction and hydrogen bonding formation to maintain the porous channels.The synthesis of organic moiety-derived saltswith permanent accessible pores even after removal of the trapped guest molecules,and without the constraint of hydrogen bonding formation still remains a great challenge.Herein,we present an expeditious construction pathway to generate hierarchically nanoporous barium salts without hydrogen bonding formation.The strong ionic interaction of the bariumcation and sulfonate anions led to rapid reaction equilibrium(∼2 min),affording diverse barium-derived ionic polymer(Ba-IP)with permanent porosity and highly polarized channels.The produced Ba-IP materials with abundant cations and anions displayed high CO_(2)/N2 and CO_(2)/CH_(4)separation performance,with the selectivities reaching up to 89.5 and 280,respectively,at 273 K,surpassingmost of the organic polymers functionalized by ionic moieties.
文摘The effects of CuCl_(2) and ZnCl_(2) on the viscosity in aqueous ethanol mixtures(10%–50%v/v)were studied in the concentration range 1.0×10^(–2)–8.0×10^(–2) mol·dm^(–3) at different temperatures.It was found that the viscosities increased with an increase in the concentration of the salts and percent composition of ethanol content,whereas it decreased with an increase in temperature.Ion-ion and ion-solvent interactions are determined with the help of A-and B-coefficients of Jones-Dole equation.The values of A-and B-coefficients are irregular and increase with a rise in temperature and also with an increase in ethanol contents for both salts.Negative values of B-coefficients show that ion solvent interactions is comparatively small and suggest that CuCl_(2) and ZnCl_(2) behave as structure breakers in aqueous ethanol mixtures.Thermodynamic parameters like the energy of activation(Eη)and change in entropy of activation(ΔS*)were also evaluated which confirm the structure breaker behavior of salts in aqueous ethanol mixtures.