The chemical industry is under considerable pressure to replace many volatile organic compounds that are widely used as solvents in organic synthesis. This trend leads to the exploration for novel reaction media. Room...The chemical industry is under considerable pressure to replace many volatile organic compounds that are widely used as solvents in organic synthesis. This trend leads to the exploration for novel reaction media. Room temperature ionic liquids as environmentally benign media for organic synthesis and catalytic reactions have been gradually recognized and accepted Owing to their unique chemical and physical properties, ionic liquids become promising candidates as recyclable reaction media for “ Green” applications. These nonvolatile solvents have been used as media or catalysts in dozens of fields, such as organic synthesis, organometallic catalytic reactions, separation and extraction processes.展开更多
Ionic liquids possess a number of unique properties that make them ideal electrolytes. Electrochemical reduction of benzoylformic acid in room temperature ionic liquids as reaction media could be conducted with excell...Ionic liquids possess a number of unique properties that make them ideal electrolytes. Electrochemical reduction of benzoylformic acid in room temperature ionic liquids as reaction media could be conducted with excellent performances without any additional supporting electrolyte. Electrolysis at glassy carbon electrode results in the formation of mandelic acid in 91% yield. And the electrochemical behavior of benzoylformic acid was investigated with the technique of cyclic voltammetry.展开更多
As a new type of green solvent with non-volatility,high thermal stability,high conductivity and various adjustable properties,ionic liquid(IL)has been widely used in the capture and electrochemical reduction of carbon...As a new type of green solvent with non-volatility,high thermal stability,high conductivity and various adjustable properties,ionic liquid(IL)has been widely used in the capture and electrochemical reduction of carbon dioxide(CO_(2)).To date,many studies have been made to investigate CO_(2)capture by using different types of ILs and CO_(2)electrochemical reduction(CO_(2)ER)with ILs as either electrolyte or other catalytic active components.Some structure-activity relationships between the structure and adsorption or catalytic properties of ILs have been found.Herein,the absorption performances and mechanisms of conventional ILs,amino-functionalized ILs,non-amino functionalized ILs and supported ILs for CO_(2)capture,as well as the performances and action mechanisms of ILs as the electrolyte,electrolyte additive,and/or electrode modifier in the process of CO_(2)ER are summarized.Many researches indicate that the unique interaction between the anion or cation of IL and CO_(2)has a significant contribution to promote the absorption and conversion of CO_(2).However,the ILs used for CO_(2)capture and electrochemical reduction should be further explored.Especially,a more in-depth investigation of the adsorption and catalytic mechanisms with the help of quantum chemical calculation,molecular simulation,and in situ characterization techniques is necessary.It is expected to design and develop more efficient ILs used for CO_(2)capture and conversion on a large scale.展开更多
The solar energy-driven electrochemical CO_(2)reduction to value-added fuels or chemicals is considered as an attractive path to store renewable energy in the form of chemical energy to close the carbon cycle.However,...The solar energy-driven electrochemical CO_(2)reduction to value-added fuels or chemicals is considered as an attractive path to store renewable energy in the form of chemical energy to close the carbon cycle.However,CO_(2)reduction suffers from a number of challenges including slow reaction rates,low selectivity,and low energy conversion efficiency.Recently,innovative strategies have been developed to mitigate this challenges.Especially the development of flow cell reactors with a gas diffusion electrode,ionic liquid electrolytes,and new electrocatalysts have dramatically improved the reaction rates and selectivity to desired products.In this perspective,we highlight the key recent developments and challenges in PVpowered electrochemical CO_(2)reduction and propose effective strategies to improve the reaction kinetics,to minimize the electrical energy losses,and to tune the selectivity of the catalysts for desired products,and then suggest future direction of research and development.展开更多
We reported solvent-free and recoverable heterogeneous iron functionalised imidazolium-based ionic liquid for the reduction of nitroarene derivatives in the presence of formic acid under greener conditions.Additionall...We reported solvent-free and recoverable heterogeneous iron functionalised imidazolium-based ionic liquid for the reduction of nitroarene derivatives in the presence of formic acid under greener conditions.Additionally,the experimental result shows that the iron complex could be an extremely resourceful,high rate and reusable catalyst for a different nitroarene substrate.展开更多
选择磷酸三丁酯(TBP)作为配体,考察铀酰—TBP配合物在1-丁基-3-甲基咪唑双三氟甲基磺酰亚胺盐([Bmim][NTf2])离子液体的萃取及电化学行为.发现铀(VI)经过两步单电子还原为铀(IV),且铀(V)至铀(IV)的还原电位(-2.7 V Vs.Pt)超过此体系的...选择磷酸三丁酯(TBP)作为配体,考察铀酰—TBP配合物在1-丁基-3-甲基咪唑双三氟甲基磺酰亚胺盐([Bmim][NTf2])离子液体的萃取及电化学行为.发现铀(VI)经过两步单电子还原为铀(IV),且铀(V)至铀(IV)的还原电位(-2.7 V Vs.Pt)超过此体系的电化学窗口,电沉积物为U3(PO3)4,继续热处理电沉积产物约573 K时转化为UP2O7.此研究表明离子液体可能在乏燃料金属的电化学分离中表现出乐观的前景.展开更多
基金Supported by the Major State Basic Research Development Program of China(No. G20004806).
文摘The chemical industry is under considerable pressure to replace many volatile organic compounds that are widely used as solvents in organic synthesis. This trend leads to the exploration for novel reaction media. Room temperature ionic liquids as environmentally benign media for organic synthesis and catalytic reactions have been gradually recognized and accepted Owing to their unique chemical and physical properties, ionic liquids become promising candidates as recyclable reaction media for “ Green” applications. These nonvolatile solvents have been used as media or catalysts in dozens of fields, such as organic synthesis, organometallic catalytic reactions, separation and extraction processes.
基金theFoundationofShanghaiScienceandTechnologyDevelopment (No .0 1JC14 0 0 2 )
文摘Ionic liquids possess a number of unique properties that make them ideal electrolytes. Electrochemical reduction of benzoylformic acid in room temperature ionic liquids as reaction media could be conducted with excellent performances without any additional supporting electrolyte. Electrolysis at glassy carbon electrode results in the formation of mandelic acid in 91% yield. And the electrochemical behavior of benzoylformic acid was investigated with the technique of cyclic voltammetry.
基金supported by JSPS KAKENHI Grant 22H01855,Japan,Natural Science Foundation of Shanxi Province(No.202103021223044)China,and Shanxi Scholarship Council of China(2022-078),China.
文摘As a new type of green solvent with non-volatility,high thermal stability,high conductivity and various adjustable properties,ionic liquid(IL)has been widely used in the capture and electrochemical reduction of carbon dioxide(CO_(2)).To date,many studies have been made to investigate CO_(2)capture by using different types of ILs and CO_(2)electrochemical reduction(CO_(2)ER)with ILs as either electrolyte or other catalytic active components.Some structure-activity relationships between the structure and adsorption or catalytic properties of ILs have been found.Herein,the absorption performances and mechanisms of conventional ILs,amino-functionalized ILs,non-amino functionalized ILs and supported ILs for CO_(2)capture,as well as the performances and action mechanisms of ILs as the electrolyte,electrolyte additive,and/or electrode modifier in the process of CO_(2)ER are summarized.Many researches indicate that the unique interaction between the anion or cation of IL and CO_(2)has a significant contribution to promote the absorption and conversion of CO_(2).However,the ILs used for CO_(2)capture and electrochemical reduction should be further explored.Especially,a more in-depth investigation of the adsorption and catalytic mechanisms with the help of quantum chemical calculation,molecular simulation,and in situ characterization techniques is necessary.It is expected to design and develop more efficient ILs used for CO_(2)capture and conversion on a large scale.
基金supported by the Climate Change Response Project(NRF-2019M1A2A2065612)the Basic Science Grant(NRF2019R1A4A1029237)+2 种基金the Korea-China Key Joint Research Program(2017K2A9A2A11070341)funded by the Ministry of Science and ICT,and by the 2019 Research Fund(1.190013.01)of UNISTsupport from‘‘Carbon to X Project”(Project No.2020M3H7A1098231)through the National Research Foundation(NRF)funded by the Ministry of Science and ICT,Republic of Korea。
文摘The solar energy-driven electrochemical CO_(2)reduction to value-added fuels or chemicals is considered as an attractive path to store renewable energy in the form of chemical energy to close the carbon cycle.However,CO_(2)reduction suffers from a number of challenges including slow reaction rates,low selectivity,and low energy conversion efficiency.Recently,innovative strategies have been developed to mitigate this challenges.Especially the development of flow cell reactors with a gas diffusion electrode,ionic liquid electrolytes,and new electrocatalysts have dramatically improved the reaction rates and selectivity to desired products.In this perspective,we highlight the key recent developments and challenges in PVpowered electrochemical CO_(2)reduction and propose effective strategies to improve the reaction kinetics,to minimize the electrical energy losses,and to tune the selectivity of the catalysts for desired products,and then suggest future direction of research and development.
文摘We reported solvent-free and recoverable heterogeneous iron functionalised imidazolium-based ionic liquid for the reduction of nitroarene derivatives in the presence of formic acid under greener conditions.Additionally,the experimental result shows that the iron complex could be an extremely resourceful,high rate and reusable catalyst for a different nitroarene substrate.
文摘选择磷酸三丁酯(TBP)作为配体,考察铀酰—TBP配合物在1-丁基-3-甲基咪唑双三氟甲基磺酰亚胺盐([Bmim][NTf2])离子液体的萃取及电化学行为.发现铀(VI)经过两步单电子还原为铀(IV),且铀(V)至铀(IV)的还原电位(-2.7 V Vs.Pt)超过此体系的电化学窗口,电沉积物为U3(PO3)4,继续热处理电沉积产物约573 K时转化为UP2O7.此研究表明离子液体可能在乏燃料金属的电化学分离中表现出乐观的前景.