期刊文献+
共找到9,864篇文章
< 1 2 250 >
每页显示 20 50 100
Interfacial friction induced capillary flow within nanofiber-supported ionic liquid droplets
1
作者 Yuanyuan Zhao Gang Xia +1 位作者 Yintung Lam John Haozhong Xin 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第5期789-791,共3页
As global economic growth increases,the demand for energy sources boosts.While fossil fuels have traditionally satisfied this demand,their environmental influence and limited reserves require alternatives.Fossil fuel co... As global economic growth increases,the demand for energy sources boosts.While fossil fuels have traditionally satisfied this demand,their environmental influence and limited reserves require alternatives.Fossil fuel combustion contributes substantially to greenhouse gas emissions,with a pressing need to halve these emissions by 2030 and target net-zero by 2050.Renewable energy sources,contributing currently to 29%of global electricity,are viewed as promising substitutes.With wind energy's potential,Zheng's team developed a novel method to harness even low wind speeds using well-aligned nanofibers and an innovative“drop wind generator”.This system,combining moisture-saturated ionic liquid 3-Methyl-1-octylimidazolium chloride with specific nanofiber arrays,exploits wind-inducedflows for energy conversion.This study highlights the vast untapped potential of low-speed wind as a sustainable energy source potentially for electronics. 展开更多
关键词 Wind energy Low-speed wind ionic liquid Electronic devices
下载PDF
An ionic liquid-assisted strategy for enhanced anticorrosion of low-energy PEO coatings on magnesium–lithium alloy 被引量:2
2
作者 You Zhang Chuping Chen +3 位作者 Haoyue Tian Shuqi Wang Chen Wen Fei Chen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2380-2396,共17页
A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainab... A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainable corrosion inhibitors are chosen to investigate the corrosion inhibition behavior of ionic liquid(ILs)during the LePEO process for LA91 magnesium-lithium(Mg-Li)alloy.Results show that the ionic liquid BmimBF_(4)participates in the LePEO coating formation process,causing an increment in coating thickness and surface roughness.The low conductivity of the ionic liquid is responsible for the voltage and breakdown voltage increases during the LePEO with IL process(LePEO-IL).After adding BmimBF_(4),corrosion current density decreases from 1.159×10^(−4)A·cm^(−2)to 8.143×10^(−6)A·cm^(−2).The impedance modulus increases to 1.048×10^(4)Ω·cm^(−2)and neutral salt spray remains intact for 24 h.The superior corrosion resistance of the LePEO coating assisted by ionic liquid could be mainly attributed to its compact and thick barrier layer and physical absorption of ionic liquid.The ionic liquid-assisted LePEO technique provides a promising approach to reducing energy consumption and improving film performance. 展开更多
关键词 Magnesium-lithium alloy Plasma electrolytic oxidation Low energy ionic liquid Corrosion resistance
下载PDF
Ionic Liquid-Enhanced Assembly of Nanomaterials for Highly Stable Flexible Transparent Electrodes 被引量:1
3
作者 Jianmin Yang Li Chang +2 位作者 Xiqi Zhang Ziquan Cao Lei Jiang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期441-455,共15页
The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the cr... The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the creation of hierarchical structures with distinctive func-tionalities,remains a formidable challenge.Here,we present a method for nanomaterial assembly enhanced by ionic liquids,which enables the fabrication of highly stable,flexible,and transparent electrodes featuring an organized layered structure.The utilization of hydrophobic and non-volatile ionic liquids facilitates the production of stable interfaces with water,effectively preventing the sedimentation of 1D/2D nanomaterials assembled at the interface.Furthermore,the interfacially assembled nanomaterial monolayer exhibits an alternate self-climbing behavior,enabling layer-by-layer transfer and the formation of a well-ordered MXene-wrapped silver nanowire network film.The resulting composite film not only demonstrates exceptional photoelectric performance with a sheet resistance of 9.4Ωsq^(-1) and 93%transmittance,but also showcases remarkable environmental stability and mechanical flexibility.Particularly noteworthy is its application in transparent electromagnetic interference shielding materials and triboelectric nanogenerator devices.This research introduces an innovative approach to manufacture and tailor functional devices based on ordered nanomaterials. 展开更多
关键词 ionic liquids ASSEMBLY Silver nanowires MXene nanosheets Flexible transparent electrodes
下载PDF
Ionic liquid derived electrocatalysts for electrochemical water splitting 被引量:1
4
作者 Tianhao Li Weihua Hu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期604-622,共19页
Hydrogen production from electrochemical water splitting is a promising strategy to generate green energy,which requires the development of efficient and stable electrocatalysts for the hydrogen evolution reaction and... Hydrogen production from electrochemical water splitting is a promising strategy to generate green energy,which requires the development of efficient and stable electrocatalysts for the hydrogen evolution reaction and the oxygen evolution reaction(HER and OER).Ionic liquids(ILs)or poly(ionic liquids)(PILs),containing heteroatoms,metal-based anions,and various structures,have been frequently involved as precursors to prepare electrocatalysts for water splitting.Moreover,ILs/PILs possess high conductivity,wide electrochemical windows,and high thermal and chemical stability,which can be directly applied in the electrocatalysis process with high durability.In this review,we focus on the studies of ILs/PILs-derived electrocatalysts for HER and OER,where ILs/PILs are applied as heteroatom dopants and metal precursors to prepare catalysts or are directly utilized as the electrocatalysts.Due to those attractive properties,IL/PIL-derived electrocatalysts exhibit excellent performance for electrochemical water splitting.All these accomplishments and developments are systematically summarized and thoughtfully discussed.Then,the overall perspectives for the current challenges and future developments of ILs/PILs-derived electrocatalysts are provided. 展开更多
关键词 ionic liquid Electrochemical water splitting Hydrogen evolution reaction Oxygen evolution reaction
下载PDF
Direct observation of ordered-disordered structural transition of MoS_(2)-confined ionic liquids
5
作者 Yumiao Lu Weilu Ding +4 位作者 Kun Li Yanlei Wang Bobo Cao Ruirui He Hongyan He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期126-132,共7页
Ionic liquids(ILs)are an emerging class of media of fundamental importance for chemical engineering,especially due to their interaction with solid surfaces.Here,we explore the growth phenomenon of surface-confined ILs... Ionic liquids(ILs)are an emerging class of media of fundamental importance for chemical engineering,especially due to their interaction with solid surfaces.Here,we explore the growth phenomenon of surface-confined ILs and reveal a peculiar structural transition behavior from order to disorder above a threshold thickness.This behavior can be explained by the variation of interfacial forces with increasing distance from the solid surface.Direct structural observation of different ILs highlights the influence of the ionic structure on the growth process.Notably,the length of the alkyl chain in the cation is found to be a determining factor for the ordering trend.Also,the thermal stability of surface-confined ILs is investigated in depth by controlling annealing treatments.It is found that the ordered monolayer ILs exhibit high robustness against high temperatures.Our findings provide new perspectives on the properties of surface-confined ILs and open up potential avenues for manipulating the structures of nanometer-thick IL films for various applications. 展开更多
关键词 ionic liquids(ils) Surface-confined ils Structural transition Thermal stability Interfacial forces
下载PDF
Enhancing CO_(2) transport with plasma-functionalized ionic liquid membranes
6
作者 舒茹晨 许卉 +5 位作者 裴晨霄 王楠 刘新刚 侯剑源 袁圆 张仁熙 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第7期74-81,共8页
The ionic liquid(IL) 1-butyl-3-methylimidazolium tetrafluoroborate treated with radiofrequency plasma is proposed for functionalization and immobilization on polyethersulfone supports to form supported ionic liquid me... The ionic liquid(IL) 1-butyl-3-methylimidazolium tetrafluoroborate treated with radiofrequency plasma is proposed for functionalization and immobilization on polyethersulfone supports to form supported ionic liquid membranes for CO_(2) separation.The effects of treatment time and transmembrane pressure difference on CO_(2) permeance were evaluated.The best gas permeation performance was obtained with a treatment time of 10 min and the transmembrane pressure difference was 0.25 MPa.Characterization of the materials by Fourier transform infrared spectroscopy,x-ray photoelectron spectroscopy and nuclear magnetic resonance spectroscopy demonstrates that the IL is grafted with carboxyl groups and deprotonated through plasma treatment.A preliminary mechanism for the plasma treatment and facilitated transport of CO_(2)has been proposed on this basis. 展开更多
关键词 ionic liquids carbon dioxide supported ionic liquid membranes facilitated transport radiofrequency plasma
下载PDF
Phosphotungstic acid ionic liquid for efficient photocatalytic desulfurization:Synthesis,application and mechanism
7
作者 Chenchao Hu Suhang Xun +5 位作者 Desheng Liu Junjie Zhang Minqiang He Wei Jiang Huaming Li Wenshuai Zhu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期101-111,共11页
An efficient mass transfer process is a critical factor for regulating catalytic activity in a photocatalytic desulfurization system.Herein,a phosphotungstic acid(HPW)active center is successfully composited with a qu... An efficient mass transfer process is a critical factor for regulating catalytic activity in a photocatalytic desulfurization system.Herein,a phosphotungstic acid(HPW)active center is successfully composited with a quaternary ammonium phosphotungstate-based hexadecyltrimethylammonium chloride ionic liquid(CTAC-HPW)by the ion exchange method for the photocatalytic oxidative desulfurization of dibenzothiophene sulfide.The keggin structure of HPW and highly mass transfer performance of organic cations synergistically enhanced the photocatalytic activity towards the effective convertion of dibenzothiophene(DBT)with the excitation of visible light.The deep desulfurization(<10 mg·kg^(-1))is attained within 30 min,and well stability is demonstrated within 25 cycles.Moreover,the CTAC-HPW photocatalyst projects well selectivity to interference from coexisting compounds such as olefins and aromatic hydrocarbons and universality of dibenzothiophenes,for example,4-methyldibenzothiophene(4-MDBT)and 4,6-dimethyldibenzothiophene(4,6-DMDBT).Ultimately,a possible photocatalytic desulfurization mechanism is proposed according to the Gaschromatography-mass spectrometry(GC-MS),proving that the final product is the corresponding sulfone.The trapping experiment and electron spin resonance(ESR)analysis confirmed that h^(+)and,COOH played critical roles in the oxidation process.The work offers a practicable strategy for efficiently converting DBT to DBTO_(2) with added value. 展开更多
关键词 Photocatalytic desulfurization EXTRACTION ionic liquid CTAC-HPW
下载PDF
Ionic liquid-assisted preparation of hydroxyapatite and its catalytic performance for decarboxylation of itaconic acid
8
作者 Shutong Pang Hualiang An +1 位作者 Xinqiang Zhao Yanji Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期9-15,共7页
The synthesis of methacrylic acid from biomass-derived itaconic acid is a green route,for it can get rid of the dependence on fossil resource.In order to solve the problems on this route such as use of a preciousmetal... The synthesis of methacrylic acid from biomass-derived itaconic acid is a green route,for it can get rid of the dependence on fossil resource.In order to solve the problems on this route such as use of a preciousmetal catalyst and a corrosive homogeneous alkali,we prepared a series of hydroxyapatite catalysts by an ionic liquid-assisted hydrothermal method and evaluated their catalytic performance.The results showed that the ionic liquid[Bmim]BF_(4) can affect the crystal growth of hydroxyapatite,provide fluoride ion for fluorination of hydroxyapatite,and adjust the surface acidity and basicity,morphology,textural properties,crystallinity,and composition of hydroxyapatite.The[Bmim]BF4 dosage and hydrothermal temperature can affect the fluoride ion concentration in the hydrothermal system,thus changing the degree of fluoridation of hydroxyapatite.High fluoride-ion concentration can lead to the formation of CaF_(2) and thus significantly decrease the catalytic performance of hydroxyapatite.The hydrothermal time mainly affects the growth of hydroxyapatite crystals on the c axis,leading to different catalytic performance.The suitable conditions for the preparation of this fluoridized hydroxyapatite are as follows:a mass ratio of[Bmim]BF4 to calcium salt=0.2:1,a hydrothermal time of 12 h,and a hydrothermal temperature of 130℃.A maximal methacrylic acid yield of 54.7%was obtained using the fluoridized hydroxyapatite under relatively mild reaction conditions(250℃ and 2 MPa of N_(2))in the absence of a precious-metal catalyst and a corrosive homogeneous alkali. 展开更多
关键词 ionic liquid HYDROXYAPATITE Itaconic acid Methacrylic Decarboxylation reaction
下载PDF
Highly selective extraction of aromatics from aliphatics by using metal chloride-based ionic liquids
9
作者 Hui Yu Xiaojia Wu +4 位作者 Chuanqi Geng Xinyu Li Chencan Du Zhiyong Zhou Zhongqi Ren 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期222-229,共8页
The separation of aromatics from aliphatics is essential for achieving maximum exploitation of oil resources in the petrochemical industry.In this study,a series of metal chloride-based ionic liquids were prepared and... The separation of aromatics from aliphatics is essential for achieving maximum exploitation of oil resources in the petrochemical industry.In this study,a series of metal chloride-based ionic liquids were prepared and their performances in the separation of 1,2,3,4-tetrahydronaphthalene(tetralin)/dodecane and tetralin/decalin systems were studied.Among these ionic liquids,1-ethyl-3-methylimidazolium tetrachloroferrate([EMIM][FeCl_(4)])with the highest selectivity was used as the extractant.Density functional theory calculations showed that[EMIM][FeCl_(4)]interacted more strongly with tetralin than with dodecane and decalin.Energy decomposition analysis of[EMIM][FeCl_(4)]-tetralin indicated that electrostatics and dispersion played essential roles,and induction cannot be neglected.The van der Waals forces was a main effect in[EMIM][FeCl_(4)]-tetralin by independent gradient model analysis.The tetralin distribution coefficient and selectivity were 0.8 and 110,respectively,with 10%(mol)tetralin in the initial tetralin/dodecane system,and 0.67 and 19.5,respectively,with 10%(mol)tetralin in the initial tetralin/decalin system.The selectivity increased with decreasing alkyl chain length of the extractant.The influence of the extraction temperature,extractant dosage,and initial concentrations of the system components on the separation performance were studied.Recycling experiments showed that the regenerated[EMIM][FeCl_(4)]could be used repeatedly. 展开更多
关键词 ionic liquid Aromatic hydrocarbon Aliphatic hydrocarbon Extraction
下载PDF
Experimental study of the effect of gas discharge on ionic liquid electrospray
10
作者 石文 杨鹏飞 +1 位作者 宋培义 吴健 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第4期37-43,共7页
Ionic liquid electrospray(ILE) in an atmospheric environment is often accompanied by the gas discharge phenomenon. It interferes with the normal operation of the electrospray and the measurement of experimental parame... Ionic liquid electrospray(ILE) in an atmospheric environment is often accompanied by the gas discharge phenomenon. It interferes with the normal operation of the electrospray and the measurement of experimental parameters. In this study, electrospray experiments were conducted on the ionic liquid EMI-BF4. The observations revealed that the operating modes of the ionic liquid depend on the voltage polarity at high voltages. Additionally, a correspondence between the operating mode of ILE and the current signal in the circuit was established. The shape of the liquid cone formed at the needle tip bore a striking resemblance to the plume of corona discharge, suggesting that the motion trajectory of electrons influenced the curvature of the liquid cone. Steamer theory provided a clear explanation for the change in curvature as the voltage increased. 展开更多
关键词 ionic liquid ELECTROSPRAY Taylor cone jet corona discharge
下载PDF
Solvent effects on Diels-Alder reaction in ionic liquids:A reaction density functional study
11
作者 Zijiang Dou Weiqiang Tang +1 位作者 Peng Xie Shuangliang Zhao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期180-188,共9页
Extensive experimental studies have been performed on the Diels-Alder(DA)reactions in ionic liquids(ILs),which demonstrate that the IL environment can significantly influence the reaction rates and selectivity.However... Extensive experimental studies have been performed on the Diels-Alder(DA)reactions in ionic liquids(ILs),which demonstrate that the IL environment can significantly influence the reaction rates and selectivity.However,the underlying microscopic mechanism remains ambiguous.In this work,the multiscale reaction density functional theory is applied to explore the effect of 1-butyl-3-methylimidazolium hexafluorophosphate([BMIM][PF_(6)])solvent on the reaction of cyclopentadiene(CP)with acrolein,methyl acrylate,or acrylonitrile.By analyzing the free energy landscape during the reaction,it is found that the polarization effect has a relatively small influence,while the solvation effect makes both the activation free energy and reaction free energy decrease.In addition,the rearrangement of local solvent structure shows that the cation spatial distribution responds more evidently to the reaction than the anion,and this indicates that the cation plays a dominant role in the solvation effect and so as to affect the reaction rates and selectivity of the DA reactions. 展开更多
关键词 Solvent effect ionic liquids Diels-Alder reaction Reaction density functional theory
下载PDF
Tuning the cross-linked structure of basic poly(ionic liquid)to develop an efficient catalyst for the conversion of vinyl carbonate to dimethyl carbonate
12
作者 Zhaoyang Qi Shiquan Zhong +4 位作者 Huiyun Su Changshen Ye Limei Ren Ting Qiu Jie Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期106-116,共11页
Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium ... Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium methoxide basic catalyst to produce DMC through the transesterification reaction between vinyl carbonate and methanol.However,the utilization of this catalyst presents several challenges during the process,including equipment corrosion,the generation of solid waste,susceptibility to deactivation,and complexities in separation and recovery.To address these limitations,a series of alkaline poly(ionic liquid)s,i.e.[DVBPIL][PHO],[DVCPIL][PHO],and[TBVPIL][PHO],with different crosslinking degrees and structures,were synthesized through the construction of cross-linked polymeric monomers and functionalization.These poly(ionic liquid)s exhibit cross-linked structures and controllable cationic and anionic characteristics.Research was conducted to investigate the effect of the cross-linking degree and structure on the catalytic performance of transesterification in synthesizing DMC.It was discovered that the appropriate cross-linking degree and structure of the[DVCPIL][PHO]catalyst resulted in a DMC yield of up to 80.6%.Furthermore,this catalyst material exhibited good stability,maintaining its catalytic activity after repeated use five times without significant changes.The results of this study demonstrate the potential for using alkaline poly(ionic liquid)s as a highly efficient and sustainable alternative to traditional catalysts for the transesterification synthesis of DMC. 展开更多
关键词 Poly(ionic liquid) Cross-linking degree Dimethyl carbonate production Transesterification reaction Mechanism
下载PDF
Experimental investigation of the polarityswitching process with different bipolar ionic liquid thruster operating frequencies
13
作者 吴湘蓓 杨铖 +1 位作者 罗嘉伟 沈岩 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第6期1-13,共13页
The bipolar ionic liquid thruster employs ionic liquid as a propellant to discharge positively and negatively charged high-energy particles under an alternating current(AC)power source,effectively suppressing electroc... The bipolar ionic liquid thruster employs ionic liquid as a propellant to discharge positively and negatively charged high-energy particles under an alternating current(AC)power source,effectively suppressing electrochemical reaction and ensuring charge neutrality.Determining an optimal AC supply power source frequency is critical for sustained stable thruster operation.This study focuses on the emission characteristics of the ionic liquid thruster under varied AC conditions.The AC power supply was set within the frequency range of 0.5-64 Hz,with eight specific frequency conditions selected for experimentation.The experimental results indicate that the thruster operates steadily within a voltage range of±1470 to±1920 V,with corresponding positive polarity current ranging from 0.41 to 4.91μA and negative polarity current ranging from−0.49 to−4.10μA.During voltage polarity switching,an emission delay occurs,manifested as a prominent peak signal caused by circuit capacitance characteristics and a minor peak signal resulting from liquid droplets.Extended emission test was conducted at 16 Hz,demonstrating approximately 1 h and 50 min of consistent emission before intermittent discharge.These findings underscore the favorable impact of AC conditions within the 8-16 Hz range on the self-neutralization capability of the ionic liquid thruster. 展开更多
关键词 space electric propulsion ionic liquid thruster bipolar operation mode FREQUENCY
下载PDF
Ionic liquids as the effective technology for enhancing transdermal drug delivery: Design principles, roles, mechanisms, and future challenges
14
作者 Xuejun Chen Ziqing Li +1 位作者 Chunrong Yang Degong Yang 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2024年第2期38-51,共14页
Ionic liquids (ILs) have been proven to be an effective technology for enhancing drug transdermal absorption. However, due to the unique structural components of ILs, the design of efficient ILs and elucidation of act... Ionic liquids (ILs) have been proven to be an effective technology for enhancing drug transdermal absorption. However, due to the unique structural components of ILs, the design of efficient ILs and elucidation of action mechanisms remain to be explored. In this review, basic design principles of ideal ILs for transdermal drug delivery system (TDDS) are discussed considering melting point, skin permeability, and toxicity, which depend on the molar ratios, types, functional groups of ions and inter-ionic interactions. Secondly, the contributions of ILs to the development of TDDS through different roles are described: as novel skin penetration enhancers for enhancing transdermal absorption of drugs;as novel solvents for improving the solubility of drugs in carriers;as novel active pharmaceutical ingredients (API-ILs) for regulating skin permeability, solubility, release, and pharmacokinetic behaviors of drugs;and as novel polymers for the development of smart medical materials. Moreover, diverse action mechanisms, mainly including the interactions among ILs, drugs, polymers, and skin components, are summarized. Finally, future challenges related to ILs are discussed, including underlying quantitative structure-activity relationships, complex interaction forces between anions, drugs, polymers and skin microenvironment, long-term stability, and in vivo safety issues. In summary, this article will promote the development of TDDS based on ILs. 展开更多
关键词 Transdermal drug delivery system ionic liquid Quantitative structure-activity relationship Intermolecular interaction
下载PDF
Revealing structure correlation between ionic liquid and metal-organic framework matrix
15
作者 Ligang Xu Wenda Zhang +8 位作者 Chenjie Lou Chenxu Geng Yuxiu Sun Jie Liu Yongchao Shi Huajie Luo Jipeng Fu Haiyan Zheng Mingxue Tang 《Magnetic Resonance Letters》 2024年第2期65-72,共8页
Solid-state batteries are rising rapidly in response to the fast-increasing energy demand.Metal-organic framework(MOF) loaded with ionic liquids has brought new opportunities for solid-state batteries owing to its goo... Solid-state batteries are rising rapidly in response to the fast-increasing energy demand.Metal-organic framework(MOF) loaded with ionic liquids has brought new opportunities for solid-state batteries owing to its good interfacial compatibility and high ionic conductivity. MOF-808 is selected to be filled with Li-contained ionic liquid for structure and ion dynamics investigation using nuclear magnetic resonance(NMR) and X-ray diffraction.This study finds that the introduced ionic liquid would partially soften the matrix of MOF-808 and thus yield amorphous phase. By selective isotope replacement under cycling symmetric ^(6)Li metal cell, Li^(+)ion is observed to mainly go cross ionic liquid in the open channel of matrix under potential polarization. 展开更多
关键词 Nuclear magnetic resonance Solid-state batteries MOF-808 ionic liquid Local structure
下载PDF
Carboxylic bacterial cellulose fiber-based hydrogel electrolyte with imidazole-type ionic liquid for dendrite-free zinc metal batteries
16
作者 Tianyun Zhang Xiaohong Shi +4 位作者 Yu Li Sambasivam Sangaraju Fujuan Wang Liang Yang Fen Ran 《Materials Reports(Energy)》 EI 2024年第2期45-53,共9页
Aqueous zinc metal batteries are regarded as the most promising energy storage system due to their advantages of high safety,low cost,and high theoretical capacity.However,the growth of dendrites and the occurrence of... Aqueous zinc metal batteries are regarded as the most promising energy storage system due to their advantages of high safety,low cost,and high theoretical capacity.However,the growth of dendrites and the occurrence of side reactions hinder the development of zinc metal batteries.Despite previous attempts to design advanced hydrogel electrolytes,achieving high mechanical performance and ionic conductivity of hydrogel electrolytes has remained challenging.In this work,a hydrogel electrolyte with an ionic crosslinked network is prepared by carboxylic bacterial cellulose fiber and imidazole-type ionic liquid,following by a covalent network of polyacrylamide.The hydrogel electrolyte possesses a superior ionic conductivity of 43.76 mS cm^(−1),leading to a Zn^(2+)migration number of 0.45,and high mechanical performance with an elastic modulus of 3.48 GPa and an elongation at breaking of 38.36%.More importantly,under the anion-coordination effect of the carboxyl group in bacterial cellulose and[BF4]−in imidazole-type ionic liquid,the solvation sheath of hydrated Zn^(2+)ions and the nucleation overpotential of Zn plating are regulated.The results of cycled testing show that the growth of zinc dendrites is effectively inhibited and the generation of irreversible by-products is reduced.With the carboxylic bacterial cellulose-based hydrogel electrolyte,the Zn||Zn symmetric batteries offer good cyclability as well as Zn||Ti batteries. 展开更多
关键词 Bacterial cellulose fiber ionic liquids Carboxylic group Gel electrolyte Zn metal batteries
下载PDF
Reduction Discoloration of Reactive Dyed Cotton Waste and Chemical Recycling via Ionic Liquid
17
作者 Aline Ferreira Knihs Larissa Klen Aragão +2 位作者 Miguel Angelo Granato Andrea Cristiane Krause Bierhalz Rita de Cassia Siqueira Curto Valle 《Journal of Renewable Materials》 EI CAS 2024年第9期1557-1571,共15页
The textile industry generates large volumes of waste throughout its production process.Most of this waste is colored,therefore,discoloration is an important step toward recycling and reusing this waste.This study foc... The textile industry generates large volumes of waste throughout its production process.Most of this waste is colored,therefore,discoloration is an important step toward recycling and reusing this waste.This study focused on the chemical reductive discoloration of textile waste composed of cotton dyed with reactive dye.The experimental design demonstrated the significant influence of the concentration of reducing agent and time of reaction on the degree of whiteness of the cotton fibers.The concentration of the alkaline agent was not significant in the process.The optimization of the reaction conditions lead to Berger degree of 50.5±3.5.The discolored cotton was chemically recycled through dissolution in ionic liquid 1-ethyl-3-methylimidazolium chloride and regeneration in film form in water.The microstructure of the regenerated cellulose films was evaluated by Scanning Electron Microscopy(SEM)indicating complete dissolution and uniform regeneration.The discoloration process reduced the polymerization degree and crystallinity index of the cotton fibers but retained the cellulose I structure.The dissolution and cellulose regeneration process results in transparent films with an amorphous structure.The thermal behavior,evaluated by thermogravimetric analysis,indicated that residues and regenerated film presented a main decomposition step.The maximum decomposition rate temperature of the regenerated films was approximately 40℃lower than the cotton fibers,which correlates well with the reduction in polymerization degree and amorphous structure.In general,the study demonstrated that textile cotton waste dyed with reactive dyes can be chemically discolored to form transparent and amorphous films,contributing to the development of sustainable strategies for the textile industry. 展开更多
关键词 Reactive dyed cotton waste reactive discoloration ionic liquid dissolution and regeneration recycling and reusing
下载PDF
Complete degradation of high-loaded phenol using tungstate-based ionic liquids with long chain substituent at mild conditions 被引量:1
18
作者 Yingying Yang Honglei Fan +2 位作者 Tianbin Wu Guanying Yang Buxing Han 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期452-458,共7页
Phenol in waste water threatens human health and is difficultly to be decomposed by nature.Efficient degradation of high-loaded phenol in water under mild condition is still a great challenge.Herein,ionic liquids with... Phenol in waste water threatens human health and is difficultly to be decomposed by nature.Efficient degradation of high-loaded phenol in water under mild condition is still a great challenge.Herein,ionic liquids with tungstate anion were designed and prepared.It was found that dodecyltrimethylammonium tungstate could catalyzed degradation of phenol into gases and water thoroughly at 323 k in 8 h.Tungstate anion revealed good catalytic oxidative activity and long carbon chain group connecting with cation of ionic liquids enriched phenol around catalysts,which induced the complete degradation of phenol at mild conditions.Increasing the amounts of hydrogen peroxide benefited to the total degradation of phenol.In addition,the ionic liquid could be reused for its excellent thermal stability.Our work provided a different strategy to treat waste water containing phenol efficiently. 展开更多
关键词 ionic liquid Oxidative degradation PHENOL TUNGSTATE Hydrogen peroxide
下载PDF
Molecular design and applications of a nanostructure green Tripodal surface active ionic liquid in enhanced oil recovery: Interfacial tension reduction, wettability alteration, and emulsification 被引量:1
19
作者 Mona Kharazi Javad Saien +1 位作者 Morteza Torabi Mohammad Ali Zolfigol 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3530-3539,共10页
Surface active ionic liquids (SAILs) are considered as prominent materials in enhanced oil recovery thanks to their high interfacial activity. This study reports the preparation and applications of a nanostructure Tri... Surface active ionic liquids (SAILs) are considered as prominent materials in enhanced oil recovery thanks to their high interfacial activity. This study reports the preparation and applications of a nanostructure Tripodal imidazolium SAIL as an environmentally-friendly substitute to the conventional surfactants. The product has a star-like molecular structure centered by a triazine spacer, namely [(C_(4)im)_(3)TA][Cl_(3)], prepared by a one-step synthesis method and characterized with FT-IR, NMR, XRD, and SEM analysis methods. The interfacial tension of the system was decreased to about 78% at critical micelle concentration of less than 0.08 mol·dm^(−3). Increasing temperature, from 298.2 to 323.2 K, improved this capability. The solid surface wettability was changed from oil-wet to water-wet and 80% and 77% stable emulsions of crude oil–aqueous solutions were created after one day and one week, respectively. Compared to the Gemini kind homologous SAILs, the superior effects of the Tripodal SAIL were revealed and attributed to the strong hydrophobic branches in the molecule. The Frumkin adsorption isotherm precisely reproduced the generated IFT data, and accordingly, the adsorption and thermodynamic parameters were determined. 展开更多
关键词 Tripodal ionic liquids Green materials Enhanced oil recovery Interfacial tension WETTABilITY EMULSIFICATION
下载PDF
Synthesis and characterization of a 1,3-dibutylimidazolium azide([BBIm][N_(3)]) : A promising green energetic ionic liquid
20
作者 Nawel Matmat Amir Abdelaziz +6 位作者 Djalal Trache Achour Sabrina Ahmed Fouzi Tarchoun Hani Boukeciat Sourbh Thakur Weiqiang Pang Thomas M.Klapotke 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期1-15,共15页
In the pursuit of advancing imidazolium-based energetic ionic liquids (EILs),the current study is devoted to the synthesis and characterization of 1,3-dibutyl-imidazolium azide ([BBIm][N_(3)]),as a novel member in thi... In the pursuit of advancing imidazolium-based energetic ionic liquids (EILs),the current study is devoted to the synthesis and characterization of 1,3-dibutyl-imidazolium azide ([BBIm][N_(3)]),as a novel member in this ionic liquids class.The chemical structure of this EIL was rigorously characterized and confirmed using FTIR spectroscopy,1D,and 2D-NMR analyses.The thermal behavior assessment was conducted through DSC and TGA experiments.DSC analysis revealed an endothermic glass transition at T_(g)=-61℃,followed by an exothermic degradation event at T_(onset)=311℃.Similarly,TGA thermograms exhibited a one-stage decomposition process resulting in 100% mass loss of the sample.Furthermore,the short-term thermal stability of the azide EIL was investigated by combining the non-isothermal TGA data with the TAS,it-KAS,and VYA/CE isoconversional kinetic approaches.Consequently,the Arrhenius parameters(E_(a)=154 kJ·mol^(-1),Log(A/s^(-1))=11.8) and the most probable reaction model g(a) were determined.The observed high decomposition temperatures and the significantly elevated activation energy affirm the enhanced thermal stability of the modified EIL.These findings revealed that[BBIm][N_(3)]EIL can be a promising candidate for advanced energetic material application. 展开更多
关键词 1 3-dibutyl-imidazolium azide[BBIm][N_(3)] Energetic imidazolium-base ionic liquids 1D-/2D-NMR analyses Short-term thermal stability Isoconversional approaches
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部