Ionic liquid (IL), [BMIM]Cl-water was applied in cellulose pretreatment process and the pretreated cellulose was used in subsequent polyethylene glycol liquefaction process as a new application method. Cellulose recov...Ionic liquid (IL), [BMIM]Cl-water was applied in cellulose pretreatment process and the pretreated cellulose was used in subsequent polyethylene glycol liquefaction process as a new application method. Cellulose recovery rate and molecular weight value of pretreated cellulose were investigated to understand the influence of IL-water mixtures by adding the different amount of catalysis on cellulose crystalline structure. Gel permeation chromatograph, X-ray diffraction, Fourier transform infrared spectrometer and thermo gravimetric/differential thermal analysis were used to clarify the changes of pretreated cellulose. The results showed that the pretreated cellulose was improved in crystalline structure, molecular weight distribution and thermal stability. The liquefied residues from untreated cellulose and pretreated cellulose were considered as a significant index to determine the effect of IL-water mixture on cellulose. It suggested that the lower molecular weight of cellulose was obtained, the crystalline structure was disrupted and less order was formed. The liquefied residues result suggested that the lower residues at the latter stages of the reaction from the pretreated cellulose were observed.展开更多
文摘Ionic liquid (IL), [BMIM]Cl-water was applied in cellulose pretreatment process and the pretreated cellulose was used in subsequent polyethylene glycol liquefaction process as a new application method. Cellulose recovery rate and molecular weight value of pretreated cellulose were investigated to understand the influence of IL-water mixtures by adding the different amount of catalysis on cellulose crystalline structure. Gel permeation chromatograph, X-ray diffraction, Fourier transform infrared spectrometer and thermo gravimetric/differential thermal analysis were used to clarify the changes of pretreated cellulose. The results showed that the pretreated cellulose was improved in crystalline structure, molecular weight distribution and thermal stability. The liquefied residues from untreated cellulose and pretreated cellulose were considered as a significant index to determine the effect of IL-water mixture on cellulose. It suggested that the lower molecular weight of cellulose was obtained, the crystalline structure was disrupted and less order was formed. The liquefied residues result suggested that the lower residues at the latter stages of the reaction from the pretreated cellulose were observed.