期刊文献+
共找到9,866篇文章
< 1 2 250 >
每页显示 20 50 100
Direct observation of ordered-disordered structural transition of MoS_(2)-confined ionic liquids
1
作者 Yumiao Lu Weilu Ding +4 位作者 Kun Li Yanlei Wang Bobo Cao Ruirui He Hongyan He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期126-132,共7页
Ionic liquids(ILs)are an emerging class of media of fundamental importance for chemical engineering,especially due to their interaction with solid surfaces.Here,we explore the growth phenomenon of surface-confined ILs... Ionic liquids(ILs)are an emerging class of media of fundamental importance for chemical engineering,especially due to their interaction with solid surfaces.Here,we explore the growth phenomenon of surface-confined ILs and reveal a peculiar structural transition behavior from order to disorder above a threshold thickness.This behavior can be explained by the variation of interfacial forces with increasing distance from the solid surface.Direct structural observation of different ILs highlights the influence of the ionic structure on the growth process.Notably,the length of the alkyl chain in the cation is found to be a determining factor for the ordering trend.Also,the thermal stability of surface-confined ILs is investigated in depth by controlling annealing treatments.It is found that the ordered monolayer ILs exhibit high robustness against high temperatures.Our findings provide new perspectives on the properties of surface-confined ILs and open up potential avenues for manipulating the structures of nanometer-thick IL films for various applications. 展开更多
关键词 ionic liquids(ils) Surface-confined ils Structural transition Thermal stability Interfacial forces
下载PDF
Highly selective extraction of aromatics from aliphatics by using metal chloride-based ionic liquids
2
作者 Hui Yu Xiaojia Wu +4 位作者 Chuanqi Geng Xinyu Li Chencan Du Zhiyong Zhou Zhongqi Ren 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期222-229,共8页
The separation of aromatics from aliphatics is essential for achieving maximum exploitation of oil resources in the petrochemical industry.In this study,a series of metal chloride-based ionic liquids were prepared and... The separation of aromatics from aliphatics is essential for achieving maximum exploitation of oil resources in the petrochemical industry.In this study,a series of metal chloride-based ionic liquids were prepared and their performances in the separation of 1,2,3,4-tetrahydronaphthalene(tetralin)/dodecane and tetralin/decalin systems were studied.Among these ionic liquids,1-ethyl-3-methylimidazolium tetrachloroferrate([EMIM][FeCl_(4)])with the highest selectivity was used as the extractant.Density functional theory calculations showed that[EMIM][FeCl_(4)]interacted more strongly with tetralin than with dodecane and decalin.Energy decomposition analysis of[EMIM][FeCl_(4)]-tetralin indicated that electrostatics and dispersion played essential roles,and induction cannot be neglected.The van der Waals forces was a main effect in[EMIM][FeCl_(4)]-tetralin by independent gradient model analysis.The tetralin distribution coefficient and selectivity were 0.8 and 110,respectively,with 10%(mol)tetralin in the initial tetralin/dodecane system,and 0.67 and 19.5,respectively,with 10%(mol)tetralin in the initial tetralin/decalin system.The selectivity increased with decreasing alkyl chain length of the extractant.The influence of the extraction temperature,extractant dosage,and initial concentrations of the system components on the separation performance were studied.Recycling experiments showed that the regenerated[EMIM][FeCl_(4)]could be used repeatedly. 展开更多
关键词 ionic liquid Aromatic hydrocarbon Aliphatic hydrocarbon Extraction
下载PDF
Solvent effects on Diels-Alder reaction in ionic liquids:A reaction density functional study
3
作者 Zijiang Dou Weiqiang Tang +1 位作者 Peng Xie Shuangliang Zhao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期180-188,共9页
Extensive experimental studies have been performed on the Diels-Alder(DA)reactions in ionic liquids(ILs),which demonstrate that the IL environment can significantly influence the reaction rates and selectivity.However... Extensive experimental studies have been performed on the Diels-Alder(DA)reactions in ionic liquids(ILs),which demonstrate that the IL environment can significantly influence the reaction rates and selectivity.However,the underlying microscopic mechanism remains ambiguous.In this work,the multiscale reaction density functional theory is applied to explore the effect of 1-butyl-3-methylimidazolium hexafluorophosphate([BMIM][PF_(6)])solvent on the reaction of cyclopentadiene(CP)with acrolein,methyl acrylate,or acrylonitrile.By analyzing the free energy landscape during the reaction,it is found that the polarization effect has a relatively small influence,while the solvation effect makes both the activation free energy and reaction free energy decrease.In addition,the rearrangement of local solvent structure shows that the cation spatial distribution responds more evidently to the reaction than the anion,and this indicates that the cation plays a dominant role in the solvation effect and so as to affect the reaction rates and selectivity of the DA reactions. 展开更多
关键词 Solvent effect ionic liquids Diels-Alder reaction Reaction density functional theory
下载PDF
Ionic liquids as the effective technology for enhancing transdermal drug delivery: Design principles, roles, mechanisms, and future challenges
4
作者 Xuejun Chen Ziqing Li +1 位作者 Chunrong Yang Degong Yang 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2024年第2期38-51,共14页
Ionic liquids (ILs) have been proven to be an effective technology for enhancing drug transdermal absorption. However, due to the unique structural components of ILs, the design of efficient ILs and elucidation of act... Ionic liquids (ILs) have been proven to be an effective technology for enhancing drug transdermal absorption. However, due to the unique structural components of ILs, the design of efficient ILs and elucidation of action mechanisms remain to be explored. In this review, basic design principles of ideal ILs for transdermal drug delivery system (TDDS) are discussed considering melting point, skin permeability, and toxicity, which depend on the molar ratios, types, functional groups of ions and inter-ionic interactions. Secondly, the contributions of ILs to the development of TDDS through different roles are described: as novel skin penetration enhancers for enhancing transdermal absorption of drugs;as novel solvents for improving the solubility of drugs in carriers;as novel active pharmaceutical ingredients (API-ILs) for regulating skin permeability, solubility, release, and pharmacokinetic behaviors of drugs;and as novel polymers for the development of smart medical materials. Moreover, diverse action mechanisms, mainly including the interactions among ILs, drugs, polymers, and skin components, are summarized. Finally, future challenges related to ILs are discussed, including underlying quantitative structure-activity relationships, complex interaction forces between anions, drugs, polymers and skin microenvironment, long-term stability, and in vivo safety issues. In summary, this article will promote the development of TDDS based on ILs. 展开更多
关键词 Transdermal drug delivery system ionic liquid Quantitative structure-activity relationship Intermolecular interaction
下载PDF
The opportunities and challenges of ionic liquids in perovskite solar cells 被引量:2
5
作者 Jian Yang Jianfei Hu +3 位作者 Wenhao Zhang Hongwei Han Yonghua Chen Yue Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期157-171,I0005,共16页
Metal halide perovskite solar cells(PSCs)have shown great potential to become the next generation of photovoltaic devices due to their simple fabrication techniques,low cost,and soaring power conversion efficiency(PCE... Metal halide perovskite solar cells(PSCs)have shown great potential to become the next generation of photovoltaic devices due to their simple fabrication techniques,low cost,and soaring power conversion efficiency(PCE).However,mismatched with the quickly updated PCEs,the improvement of device stability is challenging and still remains a critical hurdle in the path to commercialization.Recently,ionic liquids(ILs)have been found to play multiple roles in obtaining efficient and stable PSCs.These ILs usually consist of large organic cations and organic or inorganic anions,which have weak electrostatic attraction and are generally liquid at around 100℃.ILs are almost non-volatile,non-flammable,with high ionic conductivity and excellent thermal and electrochemical stability.The roles of ILs in PSCs vary with their composition,that is,the types of anions and cations.In this review,we summarize the roles of anions and cations in terms of precursor solutions,additives,perovskite/charge transport layer interface engineering,and charge transport layers.This article aims to set up a structure–property-stability-performance correlations conferred by the IL in PSC and provide assistance for the anion and cation selection for improving the quality of perovskite film,optimizing interface contact,reducing defect states,and improving charge extraction and transport characteristics.Finally,the application of IL in PSCs is discussed and prospected. 展开更多
关键词 Perovskite solar cells ionic liquid Anions and cations Additive Interface engineering
下载PDF
Complete degradation of high-loaded phenol using tungstate-based ionic liquids with long chain substituent at mild conditions 被引量:1
6
作者 Yingying Yang Honglei Fan +2 位作者 Tianbin Wu Guanying Yang Buxing Han 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期452-458,共7页
Phenol in waste water threatens human health and is difficultly to be decomposed by nature.Efficient degradation of high-loaded phenol in water under mild condition is still a great challenge.Herein,ionic liquids with... Phenol in waste water threatens human health and is difficultly to be decomposed by nature.Efficient degradation of high-loaded phenol in water under mild condition is still a great challenge.Herein,ionic liquids with tungstate anion were designed and prepared.It was found that dodecyltrimethylammonium tungstate could catalyzed degradation of phenol into gases and water thoroughly at 323 k in 8 h.Tungstate anion revealed good catalytic oxidative activity and long carbon chain group connecting with cation of ionic liquids enriched phenol around catalysts,which induced the complete degradation of phenol at mild conditions.Increasing the amounts of hydrogen peroxide benefited to the total degradation of phenol.In addition,the ionic liquid could be reused for its excellent thermal stability.Our work provided a different strategy to treat waste water containing phenol efficiently. 展开更多
关键词 ionic liquid Oxidative degradation PHENOL TUNGSTATE Hydrogen peroxide
下载PDF
Ionic liquids-SBA-15 hybrid catalysts for highly efficient and solvent-free synthesis of diphenyl carbonate 被引量:1
7
作者 Songlin Wang Qiying Zhang +3 位作者 Chengxing Cui Hongying Niu Cailing Wu Jianji Wang 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期183-193,共11页
Diphenyl carbonate(DPC)is one of the versatile carbonates,and is often used for the production of polycarbonates.In recent years,the catalytic synthesis of DPC has become an important topic but the development of a hi... Diphenyl carbonate(DPC)is one of the versatile carbonates,and is often used for the production of polycarbonates.In recent years,the catalytic synthesis of DPC has become an important topic but the development of a highly active metal-free catalyst is a great challenge.Herein,a series of ionic liquids-SBA-15 hybrid catalysts with different functional groups have been developed for the synthesis of DPC under solventfree condition,which are effective and clean instead of the metal-containing catalysts.It is found that in the presence of[SBA-15-IL-OH]Br catalyst,methyl phenyl carbonate(MPC)conversion of 80.5%along with 99.6%DPC selectivity is achieved,the TOF value is thrice higher than the best value reported by using transition metal-based catalysts.Moreover,the catalyst displays remarkable stability and recyclability.This work provides a new idea to design and prepare eco-friendly catalysts in a broad range of applications for the green synthesis of carbonates. 展开更多
关键词 Diphenyl carbonate ionic liquid Mesoporous silica DISPROPORTIONATION Catalytic synthesis
下载PDF
An ionic liquid-assisted strategy for enhanced anticorrosion of low-energy PEO coatings on magnesium–lithium alloy 被引量:2
8
作者 You Zhang Chuping Chen +3 位作者 Haoyue Tian Shuqi Wang Chen Wen Fei Chen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2380-2396,共17页
A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainab... A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainable corrosion inhibitors are chosen to investigate the corrosion inhibition behavior of ionic liquid(ILs)during the LePEO process for LA91 magnesium-lithium(Mg-Li)alloy.Results show that the ionic liquid BmimBF_(4)participates in the LePEO coating formation process,causing an increment in coating thickness and surface roughness.The low conductivity of the ionic liquid is responsible for the voltage and breakdown voltage increases during the LePEO with IL process(LePEO-IL).After adding BmimBF_(4),corrosion current density decreases from 1.159×10^(−4)A·cm^(−2)to 8.143×10^(−6)A·cm^(−2).The impedance modulus increases to 1.048×10^(4)Ω·cm^(−2)and neutral salt spray remains intact for 24 h.The superior corrosion resistance of the LePEO coating assisted by ionic liquid could be mainly attributed to its compact and thick barrier layer and physical absorption of ionic liquid.The ionic liquid-assisted LePEO technique provides a promising approach to reducing energy consumption and improving film performance. 展开更多
关键词 Magnesium-lithium alloy Plasma electrolytic oxidation Low energy ionic liquid Corrosion resistance
下载PDF
Amide Ionic Liquids(AILs)/L-Proline Synergistic Catalyzed Asymmetric Mannich Reactions 被引量:4
9
作者 LIU Bao-you ZHAO Di-shun +1 位作者 XU Dan-qian XU Zhen-yuan 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2007年第2期163-168,共6页
Amide ionic liquids (MLs)/L-proline synergistic catalyzed Mannich reactions of isovaleraldehyde, methyl ketones, and aromatic amines were carried out in moderate to high yields ( up to 96% ) and high stereo select... Amide ionic liquids (MLs)/L-proline synergistic catalyzed Mannich reactions of isovaleraldehyde, methyl ketones, and aromatic amines were carried out in moderate to high yields ( up to 96% ) and high stereo selectivities ( 〉99% e. e. ). The products were easily isolated by extraction; and the catalyst system was readily recycled at least thrice without significant loss of efficiency. The scope of the substrates was studied and the interpretation of the manifest improvement of the reaction rates and enantio-selectivity of the novel catalyst system was speculated. 展开更多
关键词 Amide ionic liquids (Ails L-PROLINE Synergistic catalysis Mannich reaction Asymmetric synthesis β-Aminoketones
下载PDF
Ionic Liquid-Enhanced Assembly of Nanomaterials for Highly Stable Flexible Transparent Electrodes 被引量:1
10
作者 Jianmin Yang Li Chang +2 位作者 Xiqi Zhang Ziquan Cao Lei Jiang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期441-455,共15页
The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the cr... The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the creation of hierarchical structures with distinctive func-tionalities,remains a formidable challenge.Here,we present a method for nanomaterial assembly enhanced by ionic liquids,which enables the fabrication of highly stable,flexible,and transparent electrodes featuring an organized layered structure.The utilization of hydrophobic and non-volatile ionic liquids facilitates the production of stable interfaces with water,effectively preventing the sedimentation of 1D/2D nanomaterials assembled at the interface.Furthermore,the interfacially assembled nanomaterial monolayer exhibits an alternate self-climbing behavior,enabling layer-by-layer transfer and the formation of a well-ordered MXene-wrapped silver nanowire network film.The resulting composite film not only demonstrates exceptional photoelectric performance with a sheet resistance of 9.4Ωsq^(-1) and 93%transmittance,but also showcases remarkable environmental stability and mechanical flexibility.Particularly noteworthy is its application in transparent electromagnetic interference shielding materials and triboelectric nanogenerator devices.This research introduces an innovative approach to manufacture and tailor functional devices based on ordered nanomaterials. 展开更多
关键词 ionic liquids ASSEMBLY Silver nanowires MXene nanosheets Flexible transparent electrodes
下载PDF
Ionic liquid derived electrocatalysts for electrochemical water splitting 被引量:1
11
作者 Tianhao Li Weihua Hu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期604-622,共19页
Hydrogen production from electrochemical water splitting is a promising strategy to generate green energy,which requires the development of efficient and stable electrocatalysts for the hydrogen evolution reaction and... Hydrogen production from electrochemical water splitting is a promising strategy to generate green energy,which requires the development of efficient and stable electrocatalysts for the hydrogen evolution reaction and the oxygen evolution reaction(HER and OER).Ionic liquids(ILs)or poly(ionic liquids)(PILs),containing heteroatoms,metal-based anions,and various structures,have been frequently involved as precursors to prepare electrocatalysts for water splitting.Moreover,ILs/PILs possess high conductivity,wide electrochemical windows,and high thermal and chemical stability,which can be directly applied in the electrocatalysis process with high durability.In this review,we focus on the studies of ILs/PILs-derived electrocatalysts for HER and OER,where ILs/PILs are applied as heteroatom dopants and metal precursors to prepare catalysts or are directly utilized as the electrocatalysts.Due to those attractive properties,IL/PIL-derived electrocatalysts exhibit excellent performance for electrochemical water splitting.All these accomplishments and developments are systematically summarized and thoughtfully discussed.Then,the overall perspectives for the current challenges and future developments of ILs/PILs-derived electrocatalysts are provided. 展开更多
关键词 ionic liquid Electrochemical water splitting Hydrogen evolution reaction Oxygen evolution reaction
下载PDF
Separation of lithium and nickel using ionic liquids and tributyl phosphate
12
作者 Kun Wang Guoquan Zhang +4 位作者 Linye Li Yuzhang Li Xiangxin Liao Pu Cheng Mingzhi Luo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第11期63-70,共8页
With the vigorous development of the electronics industry,the consumption of lithium continues to increase,and more lithium needs to be mined to meet the development of the industry.The content of lithium in the solut... With the vigorous development of the electronics industry,the consumption of lithium continues to increase,and more lithium needs to be mined to meet the development of the industry.The content of lithium in the solution is much higher than that of minerals,but the interference of impurity ions increases the difficulty of extracting lithium ions.Therefore,we prepared an imidazole-based ionic liquid(1-butyl-3-methylImidazolium bis(trifluoromethyl sulfonyl)imide)(IL)for efficient lithium extraction from aqueous solutions by solvent extraction.Using an extraction consisting of 10%IL,85% tributyl phosphate(TBP),and 5% dichloroethane and an organic to aqueous phase ratio(O/A)of 2/1,over 64.23% of Li were extracted,and the extraction rate after five-stage extraction could reach more than 96%.The addition of ammonium ions to the solution inhibited the extraction of Ni,and the separation coefficient between lithium and nickel approached infinity,showing a very perfect separation effect.Fouriertransform infrared spectroscopy and slope methods were used to analyze the changes that occurred during extraction,revealing possible extraction mechanisms.In addition,the LiCl solution generated during the preparation of ionic liquids was mixed with the stripping solution,and the battery-grade lithium carbonate was prepared by Na_(2)CO_(3) precipitation,with a purity of 99.74%.This study provides an efficient and sustainable strategy for recovering lithium from the solution. 展开更多
关键词 ionic liquids Selective separation Solvent extraction LITHIUM
下载PDF
Polymeric ionic liquids(PILs)with high acid density:Tunable catalytic performance for biodiesel production 被引量:3
13
作者 Xiaocheng Lin Youjie Huang +3 位作者 Ling Li Changshen Ye Jie Chen Ting Qiu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第10期266-275,共10页
A series of polymeric ionic liquids(PILs)used as effective heterogeneous catalysts for biodiesel production via esterification of free fatty acids(FFAs)were effectively prepared by the reaction of poly(ethylene imine)... A series of polymeric ionic liquids(PILs)used as effective heterogeneous catalysts for biodiesel production via esterification of free fatty acids(FFAs)were effectively prepared by the reaction of poly(ethylene imine)(PEI)polymers with different molecular weight and 1,3-propanesultone,followed by the further acidification with differential effective acids,i.e.H2SO4,CF3SO3H,CH3SO3H or p-toluenesulfonic acid(p-TSA).Ultrahigh acidity and catalytic performance were achieved and could be fine-tuned by simply adjusting the molecular weight of PEI and by further treatment of acids.Specifically,under the optimal conditions(i.e.reaction temperature was 70℃,reaction time was 2.0 h,catalyst dosage was 3.15%(mass),and alcohol/acid molar ratio was 14:1)acquired through the Box-BEHNKEN response surface methodology,a high oleic acid conversion of 98.42%could be obtained over the optimal PIL,PEI(70000)-PS-p-TSA.Additionally,our PILs also showed high generality for esterification of other FFAs,with general high conversion over 90%noted in each case even under much milder reaction conditions compared to other conventional catalysts. 展开更多
关键词 CATALYST ionic liquids BIODIESEL Poly(ethylene imine) ESTERIFICATION
下载PDF
A simple hydroxypyridine ionic liquids for conversion of CO_(2)into quinazoline-2,4(1H,3H)-diones under atmospheric conditions
14
作者 Bowen Jiang Meiling Weng +7 位作者 Jigang An Yuewei Fan Jia Liu Ying Liu Ting Yu Leizhi zheng Guoqiang Yang Zhibing Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第10期217-224,共8页
The transformation of CO_(2)into high value-added product is a promising pathway for utilizing CO_(2).However,the process tends to require harsh reaction conditions owing to CO_(2)chemical inertness.Designing a high e... The transformation of CO_(2)into high value-added product is a promising pathway for utilizing CO_(2).However,the process tends to require harsh reaction conditions owing to CO_(2)chemical inertness.Designing a high efficiency catalytic system with environmentally benign characteristic are important determinants.In this work,protic ionic liquids[TMG][2-OPy]were prepared via one-step neutralization between 1,1,3,3-tetramethylguanidine and 2-hydroxypyridine,applying to the domain of synthesizing quinzoline-2,4(1 H,3H)-diones from CO_(2)and 2-aminobenzontiles without any solvent or metal,achieving the yield of 97%at 90℃for 8 h under atmospheric.A series of substrates with good to acceptable yield were detected,revealing the generality and universality of the catalyst.Furthermore,the system could be facilely reused for at least six runs,retaining the yield of 94%.A preliminary kinetic equation is calculated with the activation energy of 68 kJ·mol^(-1),and a plausible reaction mechanism was put forward.This study highlights that the[TMG][2-OPy]enables to activate CO_(2)carboxylation efficiently. 展开更多
关键词 CO_(2)conversion Homogeneous catalyst ionic liquids Reaction kinetic
下载PDF
Preparation of Ionic Liquids Immobilized on FMIL-101 Catalysts for Conversion of CO_(2)to Propylene Carbonate
15
作者 Sun Wenjie Ran Weiting +2 位作者 Guo Liying Song Xiaohui LüDonghao 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第1期54-65,共12页
Metal-organic frameworks(MOFs)have attracted considerable research attention as a new type of porous material for catalytic applications.Herein,2,5-dihydroxyterephthalic acid was proposed to replace conventional terep... Metal-organic frameworks(MOFs)have attracted considerable research attention as a new type of porous material for catalytic applications.Herein,2,5-dihydroxyterephthalic acid was proposed to replace conventional terephthalic acid and reacted with chromic nitrate nonahydrate to synthesize a functional metal–organic framework(FMIL-101).This was then used to immobilize various compound ionic liquids to prepare three ionic liquids immobilized on FMIL-101 catalysts,namely,FMIL-101-[HeMIM]Cl/(ZnBr_(2))_(2),FMIL-101-[CeMIM]Cl/(ZnBr_(2))_(2),and FMIL-101-[AeMIM]Br/(ZnBr_(2))_(2).After characterization by Fourier-transform infrared spectroscopy,X-ray diffraction,ultraviolet spectroscopy,thermogravimetry,specific surface area analysis,and scanning electron microscopy,the catalysts were used to mediate cycloaddition reactions between carbon dioxide(CO_(2))and propylene oxide.The effects of reaction temperature,reaction pressure,reaction time,and catalyst dosage on the catalytic performance were investigated.The results revealed that the FMIL-101-supported CIL catalysts afforded the target product propylene carbonate with good catalytic performance and thermal stability.The optimal catalyst,FMIL-101-[CeMIM]Cl/(ZnBr_(2))_(2),displayed a propylene oxide conversion of 98.64%and a propylene carbonate selectivity of 96.63%at a reaction temperature of 110℃,a reaction pressure of 2.0 MPa,a catalyst dosage of 2.0%relative to propylene oxide,and a reaction time of 2.5 h.In addition,the conversion and selectivity of the catalyst decreased slightly after four cycles.Additionally,the catalyst decreased slightly in catalytic performance after being recycled four times. 展开更多
关键词 functional metal-organic frameworks(FMIL-101) compound salt ionic liquid IMMOBILIZATION catalysis CO_(2) cyclic carbonate
下载PDF
High-efficiency separation and extraction of naphthenic acid from high acid oils using imidazolium carbonate ionic liquids 被引量:1
16
作者 Fenghua Geng Rui Zhang +6 位作者 Luo Wu Zheng Tang Han Liu Haiyan Liu Zhichang Liu Chunming Xu Xianghai Meng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第1期252-259,共8页
N-alkyl imidazolium carbonate ionic liquids were employed to separate and recover naphthenic acid from model oils.The effects of the cationic and anionic structures of ionic liquids and operating conditions on the dea... N-alkyl imidazolium carbonate ionic liquids were employed to separate and recover naphthenic acid from model oils.The effects of the cationic and anionic structures of ionic liquids and operating conditions on the deacidification performance were investigated.The deacidification performance of traditional organic solvents was also investigated for comparison.The results indicated that the naphthenic acid could be completely removed from the model oil with a small mass ratio of ionic liquid to oil.The extracted naphthenic acid was regenerated with a recovery of up to 92%.In addition,imidazolium carbonate ionic liquids could be successfully regenerated and recycled.The mechanism of interaction between imidazole ionic liquids and the naphthenic acid molecules were explained by Gauss calculation. 展开更多
关键词 EXTRACTION ionic liquid Naphthenic acid Recovery Computational chemistry
下载PDF
POM-ILs的制备及其在聚混合二元酸乙二醇酯合成中的应用
17
作者 王雪健 徐铁军 +1 位作者 郭立颖 孙营晰 《精细化工》 EI CAS CSCD 北大核心 2024年第8期1737-1744,共8页
制备了以Sn、Fe、Ti、Zn为配位金属的Keggin型单取代多金属氧酸盐离子液体(POM-ILs)催化剂,利用FTIR、XRD、SEM、EDS及TGA对催化剂进行了表征和测试,将其用于催化混合二元酸二甲酯(DBE)与碳酸乙烯酯(EC)反应合成聚混合二元酸乙二醇酯(PD... 制备了以Sn、Fe、Ti、Zn为配位金属的Keggin型单取代多金属氧酸盐离子液体(POM-ILs)催化剂,利用FTIR、XRD、SEM、EDS及TGA对催化剂进行了表征和测试,将其用于催化混合二元酸二甲酯(DBE)与碳酸乙烯酯(EC)反应合成聚混合二元酸乙二醇酯(PDBE),考察了不同配位金属对POM-ILs催化活性的影响。采用FTIR、GPC、TGA、DSC和微机控制电子万能试验机对PDBE进行了测试,并对PDBE的酶降解性能进行了测试。结果表明,Sn单取代的锌钨酸盐离子液体[Bmim]_(6)ZnW_(11)SnO_(39)(H_(2)O)的催化性能最优,在n(EC)∶n(DBE)=1.5∶1、反应时间5 h、温度215℃、催化剂用量为总原料质量的1.1%的条件下,PDBE预聚物选择性为57.85%,收率为54.76%。在反应时间3.5 h、反应温度220℃的最佳条件下,制备的PDBE特性黏数达到0.591dL/g,拉伸强度为33.4 MPa,断裂伸长率为17.9%;数均相对分子质量为14433,重均相对分子质量为33429,平均相对分子质量为70859,多分散性指数(PDI)为2.3161。当添加质量浓度为1.2 g/L固化脂肪酶435的磷酸盐缓冲溶液降解至质量剩余率为2%~3%时,PDBE需28 d,而聚丁二酸乙二醇酯需30 d。 展开更多
关键词 多金属氧酸盐 离子液体 催化剂 尼龙酸 聚混合二元酸乙二醇酯 生物可降解聚酯 功能材料
下载PDF
Enhancing CO_(2) transport with plasma-functionalized ionic liquid membranes
18
作者 舒茹晨 许卉 +5 位作者 裴晨霄 王楠 刘新刚 侯剑源 袁圆 张仁熙 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第7期74-81,共8页
The ionic liquid(IL) 1-butyl-3-methylimidazolium tetrafluoroborate treated with radiofrequency plasma is proposed for functionalization and immobilization on polyethersulfone supports to form supported ionic liquid me... The ionic liquid(IL) 1-butyl-3-methylimidazolium tetrafluoroborate treated with radiofrequency plasma is proposed for functionalization and immobilization on polyethersulfone supports to form supported ionic liquid membranes for CO_(2) separation.The effects of treatment time and transmembrane pressure difference on CO_(2) permeance were evaluated.The best gas permeation performance was obtained with a treatment time of 10 min and the transmembrane pressure difference was 0.25 MPa.Characterization of the materials by Fourier transform infrared spectroscopy,x-ray photoelectron spectroscopy and nuclear magnetic resonance spectroscopy demonstrates that the IL is grafted with carboxyl groups and deprotonated through plasma treatment.A preliminary mechanism for the plasma treatment and facilitated transport of CO_(2)has been proposed on this basis. 展开更多
关键词 ionic liquids carbon dioxide supported ionic liquid membranes facilitated transport radiofrequency plasma
下载PDF
Phosphotungstic acid ionic liquid for efficient photocatalytic desulfurization:Synthesis,application and mechanism
19
作者 Chenchao Hu Suhang Xun +5 位作者 Desheng Liu Junjie Zhang Minqiang He Wei Jiang Huaming Li Wenshuai Zhu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期101-111,共11页
An efficient mass transfer process is a critical factor for regulating catalytic activity in a photocatalytic desulfurization system.Herein,a phosphotungstic acid(HPW)active center is successfully composited with a qu... An efficient mass transfer process is a critical factor for regulating catalytic activity in a photocatalytic desulfurization system.Herein,a phosphotungstic acid(HPW)active center is successfully composited with a quaternary ammonium phosphotungstate-based hexadecyltrimethylammonium chloride ionic liquid(CTAC-HPW)by the ion exchange method for the photocatalytic oxidative desulfurization of dibenzothiophene sulfide.The keggin structure of HPW and highly mass transfer performance of organic cations synergistically enhanced the photocatalytic activity towards the effective convertion of dibenzothiophene(DBT)with the excitation of visible light.The deep desulfurization(<10 mg·kg^(-1))is attained within 30 min,and well stability is demonstrated within 25 cycles.Moreover,the CTAC-HPW photocatalyst projects well selectivity to interference from coexisting compounds such as olefins and aromatic hydrocarbons and universality of dibenzothiophenes,for example,4-methyldibenzothiophene(4-MDBT)and 4,6-dimethyldibenzothiophene(4,6-DMDBT).Ultimately,a possible photocatalytic desulfurization mechanism is proposed according to the Gaschromatography-mass spectrometry(GC-MS),proving that the final product is the corresponding sulfone.The trapping experiment and electron spin resonance(ESR)analysis confirmed that h^(+)and,COOH played critical roles in the oxidation process.The work offers a practicable strategy for efficiently converting DBT to DBTO_(2) with added value. 展开更多
关键词 Photocatalytic desulfurization EXTRACTION ionic liquid CTAC-HPW
下载PDF
Ionic liquid-assisted preparation of hydroxyapatite and its catalytic performance for decarboxylation of itaconic acid
20
作者 Shutong Pang Hualiang An +1 位作者 Xinqiang Zhao Yanji Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期9-15,共7页
The synthesis of methacrylic acid from biomass-derived itaconic acid is a green route,for it can get rid of the dependence on fossil resource.In order to solve the problems on this route such as use of a preciousmetal... The synthesis of methacrylic acid from biomass-derived itaconic acid is a green route,for it can get rid of the dependence on fossil resource.In order to solve the problems on this route such as use of a preciousmetal catalyst and a corrosive homogeneous alkali,we prepared a series of hydroxyapatite catalysts by an ionic liquid-assisted hydrothermal method and evaluated their catalytic performance.The results showed that the ionic liquid[Bmim]BF_(4) can affect the crystal growth of hydroxyapatite,provide fluoride ion for fluorination of hydroxyapatite,and adjust the surface acidity and basicity,morphology,textural properties,crystallinity,and composition of hydroxyapatite.The[Bmim]BF4 dosage and hydrothermal temperature can affect the fluoride ion concentration in the hydrothermal system,thus changing the degree of fluoridation of hydroxyapatite.High fluoride-ion concentration can lead to the formation of CaF_(2) and thus significantly decrease the catalytic performance of hydroxyapatite.The hydrothermal time mainly affects the growth of hydroxyapatite crystals on the c axis,leading to different catalytic performance.The suitable conditions for the preparation of this fluoridized hydroxyapatite are as follows:a mass ratio of[Bmim]BF4 to calcium salt=0.2:1,a hydrothermal time of 12 h,and a hydrothermal temperature of 130℃.A maximal methacrylic acid yield of 54.7%was obtained using the fluoridized hydroxyapatite under relatively mild reaction conditions(250℃ and 2 MPa of N_(2))in the absence of a precious-metal catalyst and a corrosive homogeneous alkali. 展开更多
关键词 ionic liquid HYDROXYAPATITE Itaconic acid Methacrylic Decarboxylation reaction
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部