Liquid plasticizers with a relatively higher dielectric coefficient like ethylene carbonate(EC),propylene carbonate(PC),and ethyl methyl carbonate(EMC) are the most commonly used electrolyte materials in commercial re...Liquid plasticizers with a relatively higher dielectric coefficient like ethylene carbonate(EC),propylene carbonate(PC),and ethyl methyl carbonate(EMC) are the most commonly used electrolyte materials in commercial rechargeable lithium batteries(LIBs) due to their outstanding dissociation ability to lithium salts.However,volatility and fluidity result in their inevitable demerits like leakage and potential safety problem of the final LIBs.Here we for the first time device a subtle method to prepare a novel thermal-stable and non-fluid poly(carbonate) solid-state electrolyte to merge EC with lithium carriers.To this aim,a series of carbonate substituted imidazole ionic plastic crystals(G-NTOC) with different polymerization degrees have been synthesized.The resulting G-NTOC shows an excellent solid-state temperature window(R.T.-115℃).More importantly,the maximum ionic conductivity and lithium transference number of the prepared G-NTOC reach 0.36 × 10^(-3) S cm^(-1) and 0.523 at 30℃,respectively.Galvanostatic cycling test results reveal that the developed G-NTOC solid-state electrolytes are favorable to restraining the growth of lithium dendrite due to the excellent compatibility between the electrode and the produced plastic crystal electrolyte.The fabricated LiIG-NTOCILiFeP04 all-solid-state cell initially delivers a maximum discharge capacity of 152.1 mAh g^(-1) at the discharge rate of 0.1 C.After chargingdischarging the cell for 60 times,Coulombic efficiency of the solid-state cell still exceeds 97%.Notably,the LiIG-NTOCILiFeP04 cell can stably light a commercial LED with a rated power of 0.06 W for more than1 h at 30℃,and the output power nearly maintains unchanged with the charging-discharging cycling test,implying a sizeable potential application in the next generation of solid-state LIBs.展开更多
Organic ionic plastic crystals(OIPCs)are emerging as an important material family for solid-state electrolytes and many other applications.They have significant advantages over conventional electrolyte materials,such ...Organic ionic plastic crystals(OIPCs)are emerging as an important material family for solid-state electrolytes and many other applications.They have significant advantages over conventional electrolyte materials,such as high ionic conductivity,non-flammability,and plasticity.Various nuclear magnetic resonance(NMR)spectroscopy techniques including solid-state NMR,pulsed-field gradient(PFG)NMR,and magnetic resonance imaging(MRI)etc.,provide us a versatile toolkit to understand the fundamental level structures,molecular dynamics,and ionic interactions in these materials.This article reviews the commonly used NMR methods including solid-and solution-state NMR,PFG-NMR,dynamic nuclear polarization(DNP)and the application of these methods in revealing the microscopic level structures and ion-transport mechanisms in OIPC materials.展开更多
Organic ionic plastic crystals (OIPCs) composed of 1-ethyl-1-methyl pyrrolidinium bis(fluorosulfonyl) imide (P12FSI) and lithium bis(fluorosulfonyl)imide (LiFSI) was used as electrolyte for lithium-oxygen batteries. S...Organic ionic plastic crystals (OIPCs) composed of 1-ethyl-1-methyl pyrrolidinium bis(fluorosulfonyl) imide (P12FSI) and lithium bis(fluorosulfonyl)imide (LiFSI) was used as electrolyte for lithium-oxygen batteries. Since P12FSI-LiFSI electrolyte exhibited high ionic conductivity, good chemical stability and wide electrochemical window, the battery showed good rate capability, excellent cycling stability and can be operated stably for 320 cycles under a fixed capacity of 500 mAh/gcarbon. The use of OIPCs electrolyte could provide a new avenue for the development of high-performance Li-O2 batteries.展开更多
基金the financial support of the National Natural Science Foundation of China (21961044, 22169024)the Yunnan University’s Research Innovation Fund for graduate students (2021Y394)。
文摘Liquid plasticizers with a relatively higher dielectric coefficient like ethylene carbonate(EC),propylene carbonate(PC),and ethyl methyl carbonate(EMC) are the most commonly used electrolyte materials in commercial rechargeable lithium batteries(LIBs) due to their outstanding dissociation ability to lithium salts.However,volatility and fluidity result in their inevitable demerits like leakage and potential safety problem of the final LIBs.Here we for the first time device a subtle method to prepare a novel thermal-stable and non-fluid poly(carbonate) solid-state electrolyte to merge EC with lithium carriers.To this aim,a series of carbonate substituted imidazole ionic plastic crystals(G-NTOC) with different polymerization degrees have been synthesized.The resulting G-NTOC shows an excellent solid-state temperature window(R.T.-115℃).More importantly,the maximum ionic conductivity and lithium transference number of the prepared G-NTOC reach 0.36 × 10^(-3) S cm^(-1) and 0.523 at 30℃,respectively.Galvanostatic cycling test results reveal that the developed G-NTOC solid-state electrolytes are favorable to restraining the growth of lithium dendrite due to the excellent compatibility between the electrode and the produced plastic crystal electrolyte.The fabricated LiIG-NTOCILiFeP04 all-solid-state cell initially delivers a maximum discharge capacity of 152.1 mAh g^(-1) at the discharge rate of 0.1 C.After chargingdischarging the cell for 60 times,Coulombic efficiency of the solid-state cell still exceeds 97%.Notably,the LiIG-NTOCILiFeP04 cell can stably light a commercial LED with a rated power of 0.06 W for more than1 h at 30℃,and the output power nearly maintains unchanged with the charging-discharging cycling test,implying a sizeable potential application in the next generation of solid-state LIBs.
基金Guangdong Basic and Applied Basic Research Found ation(Guangdong Province,China)general project for the financial support。
文摘Organic ionic plastic crystals(OIPCs)are emerging as an important material family for solid-state electrolytes and many other applications.They have significant advantages over conventional electrolyte materials,such as high ionic conductivity,non-flammability,and plasticity.Various nuclear magnetic resonance(NMR)spectroscopy techniques including solid-state NMR,pulsed-field gradient(PFG)NMR,and magnetic resonance imaging(MRI)etc.,provide us a versatile toolkit to understand the fundamental level structures,molecular dynamics,and ionic interactions in these materials.This article reviews the commonly used NMR methods including solid-and solution-state NMR,PFG-NMR,dynamic nuclear polarization(DNP)and the application of these methods in revealing the microscopic level structures and ion-transport mechanisms in OIPC materials.
基金supported by the National Key R&D Program of China (No.2016YFB0901505)National Natural Science Foundation of China(No. 21573145)
文摘Organic ionic plastic crystals (OIPCs) composed of 1-ethyl-1-methyl pyrrolidinium bis(fluorosulfonyl) imide (P12FSI) and lithium bis(fluorosulfonyl)imide (LiFSI) was used as electrolyte for lithium-oxygen batteries. Since P12FSI-LiFSI electrolyte exhibited high ionic conductivity, good chemical stability and wide electrochemical window, the battery showed good rate capability, excellent cycling stability and can be operated stably for 320 cycles under a fixed capacity of 500 mAh/gcarbon. The use of OIPCs electrolyte could provide a new avenue for the development of high-performance Li-O2 batteries.
基金supported by the Special Support Program of Guangdong Province for High-level Talents(No.2014TX01N014)the Guangdong Provincial for Science&Technology(Nos.2013B091300017 and 2014A050503050)+1 种基金the Guangzhou Municipal for Science&Technology(No.201423/2014Y2-00219)the Dongguan Municipal Collaboration for Industry&Science(No.2013509104210),China