A rational integration of multiple reactive centers into a combined unit to facilitate their cooperative effects is a smart approach for accelerating the catalytic activity.Here,to achieve this goal,linear imidazolium...A rational integration of multiple reactive centers into a combined unit to facilitate their cooperative effects is a smart approach for accelerating the catalytic activity.Here,to achieve this goal,linear imidazolium-based ionic polymers were confined into the nanopores of mesoporous silica nanospheres anchored with homogeneously distributed zinc salts.Owing to the flexible character and the reinforced cooperative effects of the ionic liquid(nucleophile)and zinc species(Lewis acid)in the confined mesoporous structure,the resultant composite exhibited dramatically improved catalytic performance in the cycloaddition of CO2 with epoxides to form cyclic carbonates.This was in contrast to that observed for the individual catalytic components.Moreover,such a solid catalyst could be easily recovered and reused four times without a significant loss of activity.展开更多
In order to further improve the driving performance of ionic polymer metal composites(IPMCs),Nafion/graphene quantum dots(GQDs)hybrid membranes incorporating GQDs with various contents of 0,0.1 wt.%,0.5 wt.%,1.0 wt.%,...In order to further improve the driving performance of ionic polymer metal composites(IPMCs),Nafion/graphene quantum dots(GQDs)hybrid membranes incorporating GQDs with various contents of 0,0.1 wt.%,0.5 wt.%,1.0 wt.%,2.0 wt.%and 4.0 wt.%were fabricated by solution casting,and then IPMCs were manufactured by electroless plating.The water contents and elastic moduli of the hybrid membranes were tested.The morphology characteristics of the hybrid membranes and the IPMCs were observed,and the current,AC impedance,blocking force and displacement of the IPMCs were measured.The results show that the elastic modulus of the hybrid membranes decreases,the water content increases,and the actuation performance of the IPMCs improves significantly after the addition of GQDs.IPMC with 1.0 wt.%GQDs exhibits the best driving property.Compared with the IPMC without GQDs,the working current,ion conductivity,blocking force,and tip displacement increase by 94.67%,311.11%,53.66%,and 66.07%,respectively.These results lay a solid foundation for the preparation of IPMCs with high performance,and further broaden their applications in biomedical devices and bionic robots.展开更多
Biomineralization process regulates the growth of inorganic minerals by complex molecules,proteins,and cells,endowing bio-materials with marvels structures and excellent properties.The intricate structures and composi...Biomineralization process regulates the growth of inorganic minerals by complex molecules,proteins,and cells,endowing bio-materials with marvels structures and excellent properties.The intricate structures and compositions found in biominerals have inspired scientists to design and synthesize numerous artificial biomimetic materials.The methodology for controlling the formation of inorganics plays a pivotal role in achieving biomimetic structures and compositions.However,the current approach predominantly relies on the classical nucleation theory,which hinders the precise preparation of inorganic materials by replicating the biomineralization strategy.Recently,the development of“inorganic ionic polymerization”strategy has enabled us to regulate the arrangement of inorganic ions from solution to solid phase,which establishes an artificial way to produce inorganic materials analogous to the biomineralization process.Based on inorganic ionic polymerization,a series of achievements have been realized for the biomimetic preparation,including moldable construction of inorganic materials,hard tissue regeneration,and high-performance biomimetic materials.Moreover,the utilization of inorganic ionic polymerization has also facilitated the production of numerous advanced materials,including novel structures that exceed the current knowledge of materials science.The inorganic ionic polymerization system provides new artificial strategies and methodologies for the controllable synthesis of inorganics,which mimics the biomineralization process,paving the way for the future development of more high-performance materials.展开更多
Sulfide-based inorganic solid electrolytes are promising materials for high-performance safe solid-state batteries.The high ion conductivity,mechanical characteristics,and good processability of sulfide-based inorgani...Sulfide-based inorganic solid electrolytes are promising materials for high-performance safe solid-state batteries.The high ion conductivity,mechanical characteristics,and good processability of sulfide-based inorganic solid electrolytes are desirable properties for realizing high-performance safe solid-state batteries by replacing conventional liquid electrolytes.However,the low chemical and electrochemical stability of sulfide-based inorganic solid electrolytes hinder the commercialization of sulfide-based safe solid-state batteries.Particularly,the instability of sulfide-based inorganic solid electrolytes is intensified in the cathode,comprising various materials.In this study,carbonate-based ionic conductive polymers are introduced to the cathode to protect cathode materials and suppress the reactivity of sulfide electrolytes.Several instruments,including electrochemical spectroscopy,X-ray photoelectron spectroscopy,and scanning electron microscopy,confirm the chemical and electrochemical stability of the polymer electrolytes in contact with sulfide-based inorganic solid electrolytes.Sulfide-based solid-state cells show stable electrochemical performance over 100 cycles when the ionic conductive polymers were applied to the cathode.展开更多
The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein...The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein,we construct a lithium nitrate(LiNO_(3))-implanted electroactiveβphase polyvinylidene fluoride-co-hexafluoropropylene(PVDF-HFP)crystalline polymorph layer(PHL).The electronegatively charged polymer chains attain lithium ions on the surface to form lithium-ion charged channels.These channels act as reservoirs to sustainably release Li ions to recompense the ionic flux of electrolytes,decreasing the growth of lithium dendrites.The stretched molecular channels can also accelerate the transport of Li ions.The combined effects enable a high Coulombic efficiency of 97.0%for 250 cycles in lithium(Li)||copper(Cu)cell and a stable symmetric plating/stripping behavior over 2000 h at 3 mA cm^(-2)with ultrahigh Li utilization of 50%.Furthermore,the full cell coupled with PHL-Cu@Li anode and Li Fe PO_(4) cathode exhibits long-term cycle stability with high-capacity retention of 95.9%after 900 cycles.Impressively,the full cell paired with LiNi_(0.87)Co_(0.1)Mn_(0.03)O_(2)maintains a discharge capacity of 170.0 mAh g^(-1)with a capacity retention of 84.3%after 100 cycles even under harsh condition of ultralow N/P ratio of 0.83.This facile strategy will widen the potential application of LiNO_(3)in ester-based electrolyte for practical high-voltage LMBs.展开更多
An advanced electro-active dry adhesive, which was composed of a mushroom-shaped tibrillar dry adhesive array actuated by an Ionic Polymer Metal Composite (IPMC) artificial muscle reinforced with nitrogen-doped carb...An advanced electro-active dry adhesive, which was composed of a mushroom-shaped tibrillar dry adhesive array actuated by an Ionic Polymer Metal Composite (IPMC) artificial muscle reinforced with nitrogen-doped carbon nanocages (NCNCs), was developed to imitate the actuation of a gecko's toe. The properties of the NCNC-reinforced Nation membrane, the electro- mechanical properties of the NCNC-reinforced IPMC, and the related electro-active adhesion ability were investigated. The NCNCs were uniformly dispersed in the 0.1 wt% NCNC/Nafion membrane, and there was a seamless connection with no clear interface between the dry adhesive and the IPMC. Our 0.1 wt% NCNC/Nation-IPMC actuator shows a displacement and force that are 1.6 - 2 times higher than those of the recast Nafion-IPMC. This is due to the increased water uptake (25.39%) and tensile strength (24.5 MPa) of the specific 3D hollow NCNC-reinforced Nation membrane, as well as interactions between the NCNCs and the sulfonated groups of the Nation. The NCNC/Nation-IPMC was used to effectively actuate the mushroom-shaped dry adhesive. The normal adhesion forces were 7.85 raN, 12.1 mN, and 51.7 mN at sinusoidal voltages of 1.5 V, 2.5 V, and 3.5 V, respectively, at 0.1 Hz. Under the bionic leg trail, the normal and shear forces were approximately 713.5 mN (159 mN·cm^-2) and 1256.6 mN (279 mN·cm^-2), respectively, which satisfy the required adhesion. This new electro-active dry adhesive can be applied for active, distributed actuation and flexible grip in robots.展开更多
Recently,researchers have concentrated on studying ionic polymer metal composite(IPMC)artificial muscle,which has numerous advantages including a relatively large strain under low input voltage,flexibility,high respon...Recently,researchers have concentrated on studying ionic polymer metal composite(IPMC)artificial muscle,which has numerous advantages including a relatively large strain under low input voltage,flexibility,high response,low noise,light weight,and high driving energy density.This paper reports recent developments in IPMC artificial muscle,including improvement methods,modeling,and applications.Different types of IPMCs are described,along with various methods for overcoming some shortcomings,including improvement of Nafion matrix membranes,surface preparation of Nafion membranes,the choice of high-performing electrodes,and new electro-active polymers for enhancing the properties of IPMCs.IPMC models are also reviewed,providing theoretical guidance for studying the performance and applications of IPMCs.Successful applications such as bio-inspired robots,opto-mechatronic systems,and medical engineering are discussed.展开更多
The resistance of Ionic Polymer Metal Composite (IPMC) electrodes plays an important role in the actuation performance of IPMC actuators. Owing to crack formation on the surface of platinum electrode, the surface re...The resistance of Ionic Polymer Metal Composite (IPMC) electrodes plays an important role in the actuation performance of IPMC actuators. Owing to crack formation on the surface of platinum electrode, the surface resistance of the electrode increases, which greatly limits its actuating performance. In this paper, we proposed a new method of dynamic self-repair electrodes by ex- changing Cu2+ into the IPMC basement membrane. IPMC actuators with Cu2+ were prepared and the actuation performance in the air was subsequently measured. Compared with conventional IPMC actuators containing Li+ counter ions, those containing Cu2+ counter ions exhibited 2 times - 3 times larger displacement and 2 times -3 times bigger blocking force. In the morphology observation, we found that many small copper particles scattered in the middle of cracks after several bending cycles, which leads to an obvious decrease in electrode resistance. In the Cyclic Voltammetry (CV) scan measurement, we observed that the oxidation reaction of copper alternates with reduction reaction of copper ions with the change of voltage polarity, which was a dynamic process. Based on these analyses, it is concluded that the presence of Cu2+ can repair the damaged electrodes and induce lower electrode resistance, thus leading to the performance improvement of actuation.展开更多
A single-Rh-site catalyst(Rh-TPISP)that was ionically-embedded on a P(V)quaternary phosphonium porous polymer was evaluated for heterogeneous ethanol carbonylation.The[Rh(CO)I_(3)]^(2-)unit was proposed to be the acti...A single-Rh-site catalyst(Rh-TPISP)that was ionically-embedded on a P(V)quaternary phosphonium porous polymer was evaluated for heterogeneous ethanol carbonylation.The[Rh(CO)I_(3)]^(2-)unit was proposed to be the active center of Rh-TPISP for the carbonylation reaction based on detailed Rh L3-edge X-ray absorption near edge structure(XANES),X-ray photoelectron spectroscopy(XPS),and Rh extended X-ray absorption fine structure(EXAFS)analyses.As the highlight of this study,Rh-TPISP displayed distinctly higher activity for heterogeneous ethanol carbonylation than the reported catalytic systems in which[Rh(CO)_(2)I_(2)]^(-)is the traditional active center.A TOF of 350 h^(-1)was obtained for the reaction over[Rh(CO)I_(3)]^(2-),with>95%propionyl selectivity at 3.5 MPa and 468 K.No deactivation was detected during a near 1000 h running test.The more electron-rich Rh center was thought to be crucial for explaining the superior activity and selectivity of Rh-TPISP,and the formation of two ionic bonds between[Rh(CO)I_(3)]^(2-)and the cationic P(V)framework([P]^(+))of the polymer was suggested to play a key role in firmly immobilizing the active species to prevent Rh leaching.展开更多
In this work,we printed a Nafion precursor membrane by fused deposition modeling(FDM)rapid prototyping technology and further fabricated IPMCs by electroless plating.The ion-exchange capacity of the Nafion membrane wa...In this work,we printed a Nafion precursor membrane by fused deposition modeling(FDM)rapid prototyping technology and further fabricated IPMCs by electroless plating.The ion-exchange capacity of the Nafion membrane was tested,and the morphology of IPMCs was observed.The electro-mechanical properties of IPMCs under AC voltage inputs were studied,and grasping experiments were performed.The results show that the Nafion membrane after hydrolysis has a good ion-exchange ability and water-holding capacity.SEM observed that the thickness of the IPMC’s electrode layer was about 400 nm,and the platinum layer was tightly combined with the substrate membrane.When using a square wave input of 3.5 V and 0.1 Hz,the maximum current of IPMCs reached 0.30 A,and the displacement and blocking force were 7.57 mm and 10.5 mN,respectively.The new fabrication process ensures the good driving performance of the printed IPMC.And two pieces of IPMCs can capture the irregular objects successfully,indicating the feasibility of printing IPMCs by FDM technology.This paper provides a new and simple method for the fabrication of three-dimensional IPMCs,which can be further applied in flexible grippers and soft robotics.展开更多
We synthesized one quaternary ammonium polymeric ionic liquids(PILs)P[VBTHEA]Cl and three imidazolium PILs of P[VEIm]Br, P[VEIm]BF, P[VEIm]PFby free-radical polymerization in solution. These PILs were characterized ...We synthesized one quaternary ammonium polymeric ionic liquids(PILs)P[VBTHEA]Cl and three imidazolium PILs of P[VEIm]Br, P[VEIm]BF, P[VEIm]PFby free-radical polymerization in solution. These PILs were characterized by FT-IR,H-NMR,C-NMR, TGA, XRD and SEM. Their COadsorption capacities were measured under different pressures and temperatures by constant-volume technique. It was observed that quaternary ammonium PILs of P[VBTHEA]Cl have higher adsorption capacity for COthan those imidazolium PILs, following P[VBTHEA]Cl > P[VEIm]PF> P[VEIm]BF> P[VEIm]Br, which may be ascribed to higher positive charge density on ammonium cation than that on imidazolium cation and thus stronger interaction with CO, consistent with the results from dual-mode adsorption model that ammonium PILs have much higher CObulk absorption than imidazolium PILs. COadsorption capacity of P[VBTHEA]Cl is 9.02 mg/g under 295 K and 1 bar, which is comparable to that of some other PILs, and is much higher than that of the corresponding ILs monomer. These PILs have good adsorption selectivity for COover Nand regeneration efficiency.展开更多
Janus polymerization is featured as a combination of cationic and anionic growing ends in one living polymer chain. In the copolymerization of THF and CL catalyzed by lutetium triflates and initiated by propylene oxid...Janus polymerization is featured as a combination of cationic and anionic growing ends in one living polymer chain. In the copolymerization of THF and CL catalyzed by lutetium triflates and initiated by propylene oxide, three stages are identified by kinetic study including(1) fast cationic polymerization with slow anionic one,(2) fast anionic polymerization with dormant cationic one, and(3)reactivation of cationic polymerization with coupling of anionic and cationic chain ends. In this work, density functional theory(DFT)calculation is employed to investigate the reaction details of ionic polymerization and dormancy. A “tripedal crow” configuration is proposed to illustrate the unique high-coordinated ligand exchange configuration in anionic polymerization in different stages. The trigger of dormancy is determined as chain structures rather than concentration of triflate anion according to both calculation and experimental results.展开更多
Ionic liquids functionalized β-cyclodextrin polymer, a mono-6-deoxy-6-(1,2-dimethylimida- zolium)-β-cyclodextrin iodide polymer (ILs-β-CDCP), was synthesized as a solid-phase adsorbent coupled with high-perform...Ionic liquids functionalized β-cyclodextrin polymer, a mono-6-deoxy-6-(1,2-dimethylimida- zolium)-β-cyclodextrin iodide polymer (ILs-β-CDCP), was synthesized as a solid-phase adsorbent coupled with high-performance liquid chromatography for separating or analyzing magnolol in drug samples. The results showed that magnolol was adsorbed rapidly on ILs-D-CDCP and eluted with methanol. Under the optimum conditions, preconcentration factor of the proposed method was 12. The linear range, limit of detection (LOD), correlation coefficient (R) and relative standard deviation (RSD) were found to be 0.02-8.00 μg/mL, 1.9 ng/mL, 0.9992 and 2.76% (n=3, c=2.00 pg/mL), respectively. The interaction between 1Ls-])-CDCP and magnolol was studied through the inclusion constant, FTIR and TGA analysis. This proposed method has been successfully applied to the determination of magnolol in real samples.展开更多
Two new chiral ionic liquids, 1 -((-)-menthoxycarbonylmethylene)-3-methylimidazolium hexafluorophosphateand 1-((-)-menthoxycarbonylmethylene)-3-hexadecylimidazolium hexafluorophosphate, were designed an d prepared. Th...Two new chiral ionic liquids, 1 -((-)-menthoxycarbonylmethylene)-3-methylimidazolium hexafluorophosphateand 1-((-)-menthoxycarbonylmethylene)-3-hexadecylimidazolium hexafluorophosphate, were designed an d prepared. Theirchemical structures were characterized by ~1H-NMR. Reverse atom transfer radical polymerization of methyl methacrylate(MMA) in these two ionic liquids was carried out using AIBN/CuCl_2/bipy as the initiating system. The resultant well-definedpolymethyl methacrylate (PMMA) was employed as a macroinitiator to induce the atom transfer radical polymerization ofmenthyl methacrylate (MnMA) in chlorobenzene, which yielded a PMMA-b-PMnMA diblock copolymer with narrow polydispersity.展开更多
Palladium nanoparticles immobilized on a cross-linked imidazolium-containing polymer were evaluated as a catalyst for Suzuki carbon-carbon cross-coupling reactions using water as the solvent. The nanocatalysts show go...Palladium nanoparticles immobilized on a cross-linked imidazolium-containing polymer were evaluated as a catalyst for Suzuki carbon-carbon cross-coupling reactions using water as the solvent. The nanocatalysts show good catalytic activities for aryl iodides and aryl bromides and moderate activity with aryl chloride substrates. Coupling of sterically hindered substrates could also be achieved in reasonable yields. The heterogeneous catalyst is stable, can be stored without precautions to exclude air or moisture, and can be easily recycled and reused.展开更多
The positron annihilation lifetime and ionic conductivity are each measured as a function of organophilic rectorite(OREC) content and temperature in a range from 160 K to 300 K.According to the variation of ortho-po...The positron annihilation lifetime and ionic conductivity are each measured as a function of organophilic rectorite(OREC) content and temperature in a range from 160 K to 300 K.According to the variation of ortho-positronium(o-Ps) lifetime with temperature,the glassy transition temperature is determined.The continuous maximum entropy lifetime(MELT) analysis clearly shows that the OREC and temperature have important effects on o-Ps lifetime and free volume distribution.The experimental results show that the temperature dependence of ionic conductivity obeys the Vogel-Tammann-Fulcher(VTF) and Williams-Landel-Ferry(WLF) equations,implying a free-volume transport mechanism.A linear least-squares procedure is used to evaluate the apparent activation energy related to the ionic transport in the VTF equation and several important parameters in the WLF equation.It is worthwhile to notice that a direct linear relationship between the ionic conductivity and free volume fraction is established using the WLF equation based on the free volume theory for nanocomposite electrolyte,which indicates that the segmental chain migration and ionic migration and diffusion could be explained by the free volume theory.展开更多
The controllable molecular weight and polydispersity of polyacrylonitriles(PANs) were synthesized in ionic liquids(ILs) by atom transfer radical polymerization(ATRP) using ethyl-2 bromopropionate(EPN-Br) as initiator ...The controllable molecular weight and polydispersity of polyacrylonitriles(PANs) were synthesized in ionic liquids(ILs) by atom transfer radical polymerization(ATRP) using ethyl-2 bromopropionate(EPN-Br) as initiator and CuBr/pentamethyldiethylenetria-mine(PMDETA) as catalyst.The polydispersity index(PDI) in the ATRP of acrylonitriel(AN) in ILs is lower than 1.3.From the polymerization kinetics,plots of ln([M]0/[M]) with time show a linear dependence at the early stage of polymerization while the deviation is observed with the conversion rate increasing.The polymerization rate in ILs,especially in 1-butyl-3-methylimidazolium chloride([bmim]Cl),is higher than that in N,N-dimethylformamide(DMF).The polymerization rate increased and the average molecular weight decreased with temperature increasing.The polymerization rate,molecular weight and PDI varied with the variation of [AN]0:[EPN-Br]0:[CuBr]0:[PMDETA]0 ratio in the experimental range,the polymerization of AN in [bmim]Cl displayed living polymerization characteristics.Moreover,the catalyst and ILs are easily isolated from the polymer and reused.展开更多
Cationic ring-opening polymerization of 3,3-bis(chloromethyl)oxacyclobutane catalyzed by BF3.OEt2 was carded out in ionic liquids [bmim]BF4 and [bmim]PF6. The influences of BCMO concentration and molar ratio of BCMO...Cationic ring-opening polymerization of 3,3-bis(chloromethyl)oxacyclobutane catalyzed by BF3.OEt2 was carded out in ionic liquids [bmim]BF4 and [bmim]PF6. The influences of BCMO concentration and molar ratio of BCMO/BF3.OEt2 on the molecular weights and yield of PBCMO were investigated. The polymerization in ionic liquids proceed to high conversions, although molecular weights are limited, similar to polymerization in organic solvent such as CH2Cl2. Follow a viewpoint of green chemistry, we feel ionic liquid [bmim]BF4 is superior to [bmim]PF6. Extracting [bmim]PF6 from the product using organic solvent as extractant limits its advantage as a green reaction media.展开更多
基金supported by the National Natural Science Foundation of China(201573136,21603128,U1510105)the Natural Science Foundation for Young Scientists of Shanxi Province(2016021034)the Scientific Research Start-up Funds of Shanxi University(RSC723)~~
文摘A rational integration of multiple reactive centers into a combined unit to facilitate their cooperative effects is a smart approach for accelerating the catalytic activity.Here,to achieve this goal,linear imidazolium-based ionic polymers were confined into the nanopores of mesoporous silica nanospheres anchored with homogeneously distributed zinc salts.Owing to the flexible character and the reinforced cooperative effects of the ionic liquid(nucleophile)and zinc species(Lewis acid)in the confined mesoporous structure,the resultant composite exhibited dramatically improved catalytic performance in the cycloaddition of CO2 with epoxides to form cyclic carbonates.This was in contrast to that observed for the individual catalytic components.Moreover,such a solid catalyst could be easily recovered and reused four times without a significant loss of activity.
基金Projects(51605220,U1637101)supported by the National Natural Science Foundation of ChinaProject(BK20160793)supported by the Jiangsu Provincial Natural Science Foundation,ChinaProject(NS2020029)supported by the Fundamental Research Funds for the Central Universities,China。
文摘In order to further improve the driving performance of ionic polymer metal composites(IPMCs),Nafion/graphene quantum dots(GQDs)hybrid membranes incorporating GQDs with various contents of 0,0.1 wt.%,0.5 wt.%,1.0 wt.%,2.0 wt.%and 4.0 wt.%were fabricated by solution casting,and then IPMCs were manufactured by electroless plating.The water contents and elastic moduli of the hybrid membranes were tested.The morphology characteristics of the hybrid membranes and the IPMCs were observed,and the current,AC impedance,blocking force and displacement of the IPMCs were measured.The results show that the elastic modulus of the hybrid membranes decreases,the water content increases,and the actuation performance of the IPMCs improves significantly after the addition of GQDs.IPMC with 1.0 wt.%GQDs exhibits the best driving property.Compared with the IPMC without GQDs,the working current,ion conductivity,blocking force,and tip displacement increase by 94.67%,311.11%,53.66%,and 66.07%,respectively.These results lay a solid foundation for the preparation of IPMCs with high performance,and further broaden their applications in biomedical devices and bionic robots.
基金supports from the National Natural Science Foundation of China(Nos.22022511 and 22275161)the National Key Research and Development Program of China(No.2020YFA0710400)the Fundamental Research Funds for the Central Universities(Nos.2021FZZX001-04 and 2022ZJJH02-01).
文摘Biomineralization process regulates the growth of inorganic minerals by complex molecules,proteins,and cells,endowing bio-materials with marvels structures and excellent properties.The intricate structures and compositions found in biominerals have inspired scientists to design and synthesize numerous artificial biomimetic materials.The methodology for controlling the formation of inorganics plays a pivotal role in achieving biomimetic structures and compositions.However,the current approach predominantly relies on the classical nucleation theory,which hinders the precise preparation of inorganic materials by replicating the biomineralization strategy.Recently,the development of“inorganic ionic polymerization”strategy has enabled us to regulate the arrangement of inorganic ions from solution to solid phase,which establishes an artificial way to produce inorganic materials analogous to the biomineralization process.Based on inorganic ionic polymerization,a series of achievements have been realized for the biomimetic preparation,including moldable construction of inorganic materials,hard tissue regeneration,and high-performance biomimetic materials.Moreover,the utilization of inorganic ionic polymerization has also facilitated the production of numerous advanced materials,including novel structures that exceed the current knowledge of materials science.The inorganic ionic polymerization system provides new artificial strategies and methodologies for the controllable synthesis of inorganics,which mimics the biomineralization process,paving the way for the future development of more high-performance materials.
基金supported by the Enhancement of Performance and Production Technology of Lithium-based Next-generation Rechargeable Battery(project number 20012371)from the Ministry of Trade,Industry and Energy(MOTIE)of Koreasupported by project number KS2322-20(A Study on the Convergence Materials for Off-Grid Energy Conversion/Storage Integrated Devices)of the Korea Research Institute of Chemical Technology(KRICT).
文摘Sulfide-based inorganic solid electrolytes are promising materials for high-performance safe solid-state batteries.The high ion conductivity,mechanical characteristics,and good processability of sulfide-based inorganic solid electrolytes are desirable properties for realizing high-performance safe solid-state batteries by replacing conventional liquid electrolytes.However,the low chemical and electrochemical stability of sulfide-based inorganic solid electrolytes hinder the commercialization of sulfide-based safe solid-state batteries.Particularly,the instability of sulfide-based inorganic solid electrolytes is intensified in the cathode,comprising various materials.In this study,carbonate-based ionic conductive polymers are introduced to the cathode to protect cathode materials and suppress the reactivity of sulfide electrolytes.Several instruments,including electrochemical spectroscopy,X-ray photoelectron spectroscopy,and scanning electron microscopy,confirm the chemical and electrochemical stability of the polymer electrolytes in contact with sulfide-based inorganic solid electrolytes.Sulfide-based solid-state cells show stable electrochemical performance over 100 cycles when the ionic conductive polymers were applied to the cathode.
基金the financial support from the National Natural Science Foundation of China(Nos.22205191 and 52002346)the Science and Technology Innovation Program of Hunan Province(No.2021RC3109)+1 种基金the Natural Science Foundation of Hunan Province,China(No.2022JJ40446)Guangxi Key Laboratory of Low Carbon Energy Material(No.2020GXKLLCEM01)。
文摘The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein,we construct a lithium nitrate(LiNO_(3))-implanted electroactiveβphase polyvinylidene fluoride-co-hexafluoropropylene(PVDF-HFP)crystalline polymorph layer(PHL).The electronegatively charged polymer chains attain lithium ions on the surface to form lithium-ion charged channels.These channels act as reservoirs to sustainably release Li ions to recompense the ionic flux of electrolytes,decreasing the growth of lithium dendrites.The stretched molecular channels can also accelerate the transport of Li ions.The combined effects enable a high Coulombic efficiency of 97.0%for 250 cycles in lithium(Li)||copper(Cu)cell and a stable symmetric plating/stripping behavior over 2000 h at 3 mA cm^(-2)with ultrahigh Li utilization of 50%.Furthermore,the full cell coupled with PHL-Cu@Li anode and Li Fe PO_(4) cathode exhibits long-term cycle stability with high-capacity retention of 95.9%after 900 cycles.Impressively,the full cell paired with LiNi_(0.87)Co_(0.1)Mn_(0.03)O_(2)maintains a discharge capacity of 170.0 mAh g^(-1)with a capacity retention of 84.3%after 100 cycles even under harsh condition of ultralow N/P ratio of 0.83.This facile strategy will widen the potential application of LiNO_(3)in ester-based electrolyte for practical high-voltage LMBs.
基金This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 51605220, U1637101, 51435008), the Natural Science Foundation of Jiangsu Province (Grant No. BK20160793), the High Level Introduction of Talent Research Start-up Fund in NUAA (Grant No. 1011-YAH16010), and Open Project Fund in Jiangsu Provincial Key Laboratory for Interventional Medical Devices (Grant No. jr1601). The authors would very much like to thank Professor Stanislav N. Gorb in the Department of Functional Morphology and Biome- chanics in the Zoological Institute of the University of Kiel, Germany, for his help with the mushroom-shapeddry adhesives, and also thank Dr. Yajun Xue and Miss Yan Ding for help with the SEM observations.
文摘An advanced electro-active dry adhesive, which was composed of a mushroom-shaped tibrillar dry adhesive array actuated by an Ionic Polymer Metal Composite (IPMC) artificial muscle reinforced with nitrogen-doped carbon nanocages (NCNCs), was developed to imitate the actuation of a gecko's toe. The properties of the NCNC-reinforced Nation membrane, the electro- mechanical properties of the NCNC-reinforced IPMC, and the related electro-active adhesion ability were investigated. The NCNCs were uniformly dispersed in the 0.1 wt% NCNC/Nafion membrane, and there was a seamless connection with no clear interface between the dry adhesive and the IPMC. Our 0.1 wt% NCNC/Nation-IPMC actuator shows a displacement and force that are 1.6 - 2 times higher than those of the recast Nafion-IPMC. This is due to the increased water uptake (25.39%) and tensile strength (24.5 MPa) of the specific 3D hollow NCNC-reinforced Nation membrane, as well as interactions between the NCNCs and the sulfonated groups of the Nation. The NCNC/Nation-IPMC was used to effectively actuate the mushroom-shaped dry adhesive. The normal adhesion forces were 7.85 raN, 12.1 mN, and 51.7 mN at sinusoidal voltages of 1.5 V, 2.5 V, and 3.5 V, respectively, at 0.1 Hz. Under the bionic leg trail, the normal and shear forces were approximately 713.5 mN (159 mN·cm^-2) and 1256.6 mN (279 mN·cm^-2), respectively, which satisfy the required adhesion. This new electro-active dry adhesive can be applied for active, distributed actuation and flexible grip in robots.
基金financial supportfrom the National Natural Science Foundation of China(Grant Nos.51605220,U1637101)the Jiangsu Province NaturalScience Foundation(GrantNo.BK20160793)。
文摘Recently,researchers have concentrated on studying ionic polymer metal composite(IPMC)artificial muscle,which has numerous advantages including a relatively large strain under low input voltage,flexibility,high response,low noise,light weight,and high driving energy density.This paper reports recent developments in IPMC artificial muscle,including improvement methods,modeling,and applications.Different types of IPMCs are described,along with various methods for overcoming some shortcomings,including improvement of Nafion matrix membranes,surface preparation of Nafion membranes,the choice of high-performing electrodes,and new electro-active polymers for enhancing the properties of IPMCs.IPMC models are also reviewed,providing theoretical guidance for studying the performance and applications of IPMCs.Successful applications such as bio-inspired robots,opto-mechatronic systems,and medical engineering are discussed.
基金The authors gratefully acknowledge financial support from the Joint Funds of the National Natural Science Foundation of China (U1637101) and NSFC (51605220 and 51175251), Natural Science Foundation of Jiangsu Province (BK20160793), the Open Project Fund in Jiangsu Provincial Key Laboratory for Interventional Medical Devices (jr1601), the Open Project Fund in Hubei Key Laboratory of Hydroelectric Ma- chinery Design & Maintenance (2017KJX 11). This is a project funded by the Priority Academic Program De- velopment of Jiangsu Higher Education Institutions (PAPD), Shanghai Key Laboratory of Spacecraft Mechanism and Science and Technology Commission of the Military Commission. Special thanks to Andrew Jackson, PhD, for editing the English text of a draft of this manuscript.
文摘The resistance of Ionic Polymer Metal Composite (IPMC) electrodes plays an important role in the actuation performance of IPMC actuators. Owing to crack formation on the surface of platinum electrode, the surface resistance of the electrode increases, which greatly limits its actuating performance. In this paper, we proposed a new method of dynamic self-repair electrodes by ex- changing Cu2+ into the IPMC basement membrane. IPMC actuators with Cu2+ were prepared and the actuation performance in the air was subsequently measured. Compared with conventional IPMC actuators containing Li+ counter ions, those containing Cu2+ counter ions exhibited 2 times - 3 times larger displacement and 2 times -3 times bigger blocking force. In the morphology observation, we found that many small copper particles scattered in the middle of cracks after several bending cycles, which leads to an obvious decrease in electrode resistance. In the Cyclic Voltammetry (CV) scan measurement, we observed that the oxidation reaction of copper alternates with reduction reaction of copper ions with the change of voltage polarity, which was a dynamic process. Based on these analyses, it is concluded that the presence of Cu2+ can repair the damaged electrodes and induce lower electrode resistance, thus leading to the performance improvement of actuation.
文摘A single-Rh-site catalyst(Rh-TPISP)that was ionically-embedded on a P(V)quaternary phosphonium porous polymer was evaluated for heterogeneous ethanol carbonylation.The[Rh(CO)I_(3)]^(2-)unit was proposed to be the active center of Rh-TPISP for the carbonylation reaction based on detailed Rh L3-edge X-ray absorption near edge structure(XANES),X-ray photoelectron spectroscopy(XPS),and Rh extended X-ray absorption fine structure(EXAFS)analyses.As the highlight of this study,Rh-TPISP displayed distinctly higher activity for heterogeneous ethanol carbonylation than the reported catalytic systems in which[Rh(CO)_(2)I_(2)]^(-)is the traditional active center.A TOF of 350 h^(-1)was obtained for the reaction over[Rh(CO)I_(3)]^(2-),with>95%propionyl selectivity at 3.5 MPa and 468 K.No deactivation was detected during a near 1000 h running test.The more electron-rich Rh center was thought to be crucial for explaining the superior activity and selectivity of Rh-TPISP,and the formation of two ionic bonds between[Rh(CO)I_(3)]^(2-)and the cationic P(V)framework([P]^(+))of the polymer was suggested to play a key role in firmly immobilizing the active species to prevent Rh leaching.
基金This research was supported by the Joint Funds of the National Natural Science Foundation of China(U1637101)and NSFC(51605220)the Natural Science Foundation of Jiangsu Province(BK20160793)Open Funding from the Shanghai Key Laboratory of Spacecraft Mechanism,Open Project funding form Hubei Key Laboratory of Hydroelectric Machinery Design&Maintenance(2017KJX11).
文摘In this work,we printed a Nafion precursor membrane by fused deposition modeling(FDM)rapid prototyping technology and further fabricated IPMCs by electroless plating.The ion-exchange capacity of the Nafion membrane was tested,and the morphology of IPMCs was observed.The electro-mechanical properties of IPMCs under AC voltage inputs were studied,and grasping experiments were performed.The results show that the Nafion membrane after hydrolysis has a good ion-exchange ability and water-holding capacity.SEM observed that the thickness of the IPMC’s electrode layer was about 400 nm,and the platinum layer was tightly combined with the substrate membrane.When using a square wave input of 3.5 V and 0.1 Hz,the maximum current of IPMCs reached 0.30 A,and the displacement and blocking force were 7.57 mm and 10.5 mN,respectively.The new fabrication process ensures the good driving performance of the printed IPMC.And two pieces of IPMCs can capture the irregular objects successfully,indicating the feasibility of printing IPMCs by FDM technology.This paper provides a new and simple method for the fabrication of three-dimensional IPMCs,which can be further applied in flexible grippers and soft robotics.
基金financially supported by State Key Laboratory of Organic-Inorganic Composites(oic-201601012)the International Scientific Partnership Program ISPP at King Saud University for funding this research work through ISPP#0080
文摘We synthesized one quaternary ammonium polymeric ionic liquids(PILs)P[VBTHEA]Cl and three imidazolium PILs of P[VEIm]Br, P[VEIm]BF, P[VEIm]PFby free-radical polymerization in solution. These PILs were characterized by FT-IR,H-NMR,C-NMR, TGA, XRD and SEM. Their COadsorption capacities were measured under different pressures and temperatures by constant-volume technique. It was observed that quaternary ammonium PILs of P[VBTHEA]Cl have higher adsorption capacity for COthan those imidazolium PILs, following P[VBTHEA]Cl > P[VEIm]PF> P[VEIm]BF> P[VEIm]Br, which may be ascribed to higher positive charge density on ammonium cation than that on imidazolium cation and thus stronger interaction with CO, consistent with the results from dual-mode adsorption model that ammonium PILs have much higher CObulk absorption than imidazolium PILs. COadsorption capacity of P[VBTHEA]Cl is 9.02 mg/g under 295 K and 1 bar, which is comparable to that of some other PILs, and is much higher than that of the corresponding ILs monomer. These PILs have good adsorption selectivity for COover Nand regeneration efficiency.
基金financially supported by the National Natural Science Foundation of China (No. 21871232)the Zhejiang Provincial Natural Science Foundation of China (No. LR15B040001)
文摘Janus polymerization is featured as a combination of cationic and anionic growing ends in one living polymer chain. In the copolymerization of THF and CL catalyzed by lutetium triflates and initiated by propylene oxide, three stages are identified by kinetic study including(1) fast cationic polymerization with slow anionic one,(2) fast anionic polymerization with dormant cationic one, and(3)reactivation of cationic polymerization with coupling of anionic and cationic chain ends. In this work, density functional theory(DFT)calculation is employed to investigate the reaction details of ionic polymerization and dormancy. A “tripedal crow” configuration is proposed to illustrate the unique high-coordinated ligand exchange configuration in anionic polymerization in different stages. The trigger of dormancy is determined as chain structures rather than concentration of triflate anion according to both calculation and experimental results.
基金the financial support from the National Natural Science Foundation of China(Nos.21155001 and 21375117)a project funded by the Priority Academic ProgramDevelopment of Jiangsu Higher Education Institutionsthe Foundation of the Excellence Science and Technology Invention Team in Yangzhou University
文摘Ionic liquids functionalized β-cyclodextrin polymer, a mono-6-deoxy-6-(1,2-dimethylimida- zolium)-β-cyclodextrin iodide polymer (ILs-β-CDCP), was synthesized as a solid-phase adsorbent coupled with high-performance liquid chromatography for separating or analyzing magnolol in drug samples. The results showed that magnolol was adsorbed rapidly on ILs-D-CDCP and eluted with methanol. Under the optimum conditions, preconcentration factor of the proposed method was 12. The linear range, limit of detection (LOD), correlation coefficient (R) and relative standard deviation (RSD) were found to be 0.02-8.00 μg/mL, 1.9 ng/mL, 0.9992 and 2.76% (n=3, c=2.00 pg/mL), respectively. The interaction between 1Ls-])-CDCP and magnolol was studied through the inclusion constant, FTIR and TGA analysis. This proposed method has been successfully applied to the determination of magnolol in real samples.
基金This work was supported by the National Natural Science Foundation of China (Grants 20174001, 29992590-4) and the Ministry of Education of China for the teaching and research award fund for outstanding young teacher in higher education institutions.
文摘Two new chiral ionic liquids, 1 -((-)-menthoxycarbonylmethylene)-3-methylimidazolium hexafluorophosphateand 1-((-)-menthoxycarbonylmethylene)-3-hexadecylimidazolium hexafluorophosphate, were designed an d prepared. Theirchemical structures were characterized by ~1H-NMR. Reverse atom transfer radical polymerization of methyl methacrylate(MMA) in these two ionic liquids was carried out using AIBN/CuCl_2/bipy as the initiating system. The resultant well-definedpolymethyl methacrylate (PMMA) was employed as a macroinitiator to induce the atom transfer radical polymerization ofmenthyl methacrylate (MnMA) in chlorobenzene, which yielded a PMMA-b-PMnMA diblock copolymer with narrow polydispersity.
基金supported by the Ecole Polytechnique Fédérale de Lausanne and the Iranian Ministry of Science,Research and Technology(to S.G.-E.)
文摘Palladium nanoparticles immobilized on a cross-linked imidazolium-containing polymer were evaluated as a catalyst for Suzuki carbon-carbon cross-coupling reactions using water as the solvent. The nanocatalysts show good catalytic activities for aryl iodides and aryl bromides and moderate activity with aryl chloride substrates. Coupling of sterically hindered substrates could also be achieved in reasonable yields. The heterogeneous catalyst is stable, can be stored without precautions to exclude air or moisture, and can be easily recycled and reused.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11175134)
文摘The positron annihilation lifetime and ionic conductivity are each measured as a function of organophilic rectorite(OREC) content and temperature in a range from 160 K to 300 K.According to the variation of ortho-positronium(o-Ps) lifetime with temperature,the glassy transition temperature is determined.The continuous maximum entropy lifetime(MELT) analysis clearly shows that the OREC and temperature have important effects on o-Ps lifetime and free volume distribution.The experimental results show that the temperature dependence of ionic conductivity obeys the Vogel-Tammann-Fulcher(VTF) and Williams-Landel-Ferry(WLF) equations,implying a free-volume transport mechanism.A linear least-squares procedure is used to evaluate the apparent activation energy related to the ionic transport in the VTF equation and several important parameters in the WLF equation.It is worthwhile to notice that a direct linear relationship between the ionic conductivity and free volume fraction is established using the WLF equation based on the free volume theory for nanocomposite electrolyte,which indicates that the segmental chain migration and ionic migration and diffusion could be explained by the free volume theory.
文摘The controllable molecular weight and polydispersity of polyacrylonitriles(PANs) were synthesized in ionic liquids(ILs) by atom transfer radical polymerization(ATRP) using ethyl-2 bromopropionate(EPN-Br) as initiator and CuBr/pentamethyldiethylenetria-mine(PMDETA) as catalyst.The polydispersity index(PDI) in the ATRP of acrylonitriel(AN) in ILs is lower than 1.3.From the polymerization kinetics,plots of ln([M]0/[M]) with time show a linear dependence at the early stage of polymerization while the deviation is observed with the conversion rate increasing.The polymerization rate in ILs,especially in 1-butyl-3-methylimidazolium chloride([bmim]Cl),is higher than that in N,N-dimethylformamide(DMF).The polymerization rate increased and the average molecular weight decreased with temperature increasing.The polymerization rate,molecular weight and PDI varied with the variation of [AN]0:[EPN-Br]0:[CuBr]0:[PMDETA]0 ratio in the experimental range,the polymerization of AN in [bmim]Cl displayed living polymerization characteristics.Moreover,the catalyst and ILs are easily isolated from the polymer and reused.
基金financially supported by the Key Project of Chinese Ministry of Education(No.105075)the National Natural Science Foundation of China(No.20503016).
文摘Cationic ring-opening polymerization of 3,3-bis(chloromethyl)oxacyclobutane catalyzed by BF3.OEt2 was carded out in ionic liquids [bmim]BF4 and [bmim]PF6. The influences of BCMO concentration and molar ratio of BCMO/BF3.OEt2 on the molecular weights and yield of PBCMO were investigated. The polymerization in ionic liquids proceed to high conversions, although molecular weights are limited, similar to polymerization in organic solvent such as CH2Cl2. Follow a viewpoint of green chemistry, we feel ionic liquid [bmim]BF4 is superior to [bmim]PF6. Extracting [bmim]PF6 from the product using organic solvent as extractant limits its advantage as a green reaction media.
基金financially supported by the National Natural Science Foundation of China (Nos. 52174340, 51704338)the Basic Science Center of the National Natural Science Foundation of China (No. 72088101)the National Key Research and Development Project of China (No. 2022YFC2904505)。