期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
High Ion-Selectivity of Garnet Solid Electrolyte Enabling Separation of Metallic Lithium
1
作者 Haitian Zhang Jialiang Lang +8 位作者 Kai Liu Yang Jin Kuangyu Wang Yulong Wu Siqi Shi Li Wang Hong Xu Xiangming He Hui Wu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第6期236-242,共7页
Ionic selectivity is of significant importance in both fundamental science and practical applications.For instance,an ion-selective material allows the passage of a particular kind of ions while blocking the others,wh... Ionic selectivity is of significant importance in both fundamental science and practical applications.For instance,an ion-selective material allows the passage of a particular kind of ions while blocking the others,which could be used for purification of materials.Herein,the Li-ion-selectivity of a garnet-type solid electrolyte is discussed by comparing the difference of activation energy between different ions migrating in solids.The high ion-selectivity is confirmed by harvesting high-purity metallic lithium(99.98 wt%)from low-lithium-purity sources(80 wt%)at a moderate temperature(190℃).This gives it huge potential in separating lithium with impurities especially alkali and alkali-earth elements.The cost of metallic lithium production is only 25%of the international lithium price.The proposed electrochemical metallic lithium separating method is advantageous compared with the traditional process in terms of efficiency,safety,and cost. 展开更多
关键词 ion separating ionic selectivity lithium metal solid electrolyte
下载PDF
Selective hydrolysis of lignocelluloses from corn stalk in an ionic liquid
2
作者 YIN WeiPing 1 , 2 , LI Xin 1 , REN YunLai 1 , ZHAO Shuang 1 , 2 , WANG JianJi 1 , 2 ( 1 School of Chemical Engineering and Pharmaceutics , Henan University of Science and Technology , Luoyang 471003 , Henan , China 2 The key laboratory for biomass clean energy , Henan University of Science and Technology , Luoyang 471003 , Henan , China ) 《化工进展》 EI CAS CSCD 北大核心 2012年第S1期528-528,共1页
Although lots of basic studies , such as the hydrolysis and dissolution of lignocelluloses has made great progress in recent years , the hydrolysates containing complex mixture of pentose and hexose are very hard to b... Although lots of basic studies , such as the hydrolysis and dissolution of lignocelluloses has made great progress in recent years , the hydrolysates containing complex mixture of pentose and hexose are very hard to be separated , and these process sometimes cause serious environmental problems in practical application of cellulose polymer degradation science.Herein , an efficient two-stage method for selective hydrolysis of lignocelluloses biomass is being developed in this paper by controlling of pH in an ionic liquid.The lignin-hemicelluloses matrix in corn stalk was hydrolyzed into xylose in 23.1% yield in the first stage ; and cellulose-rich residues from the first stage was by farther hydrolyzed to provide a glucose in 26.9%yield.Structure of the products were identified by 13 C NMR.It should be mentioned that , the ionic liquid which can be regenerated and reused throughout the process. The present work significantly opens an a new path to utilize each component of lignocellulose as raw materials producing biofuels , renewable energy and fine chemicals. 展开更多
关键词 Selective hydrolysis of lignocelluloses from corn stalk in an ionic liquid
下载PDF
Protein separation using a novel silica-based RPLC/IEC stationary phase modified with N-methylimidazolium ionic liquid 被引量:1
3
作者 Yi-Xin Wang Kai-Lou Zhao +3 位作者 Fan Yang Lei Tian Ying Yang Quan Bai 《Chinese Chemical Letters》 SCIE CAS CSCD 2015年第8期988-992,共5页
Ionic liquids(ILs) immobilized on silica as novel high performance liquid chromatography(HPLC)stationary phases have attracted considerable attention. However, it has not been applied to protein separation. In thi... Ionic liquids(ILs) immobilized on silica as novel high performance liquid chromatography(HPLC)stationary phases have attracted considerable attention. However, it has not been applied to protein separation. In this paper, N-methylimidazolium IL-modified silica-based stationary phase(Silpr Mim)was prepared and investigated as a novel multi-interaction stationary phase charged positively for protein separation. The results indicate that all of the basic proteins tested cannot be absorbed on this novel stationary phase, whereas all of the acidic proteins tested can be retained, and the baseline separation of eight kinds of acidic protein standards can be achieved when performed in reversed phase/ion-exchange chromatography(RPLC/IEC) mode. Compared with commonly used commercial octadecylated silica(ODS) column, the novel stationary phase can show selectivity and good resolution to acidic proteins, which has a promising application in the separation and analyses of acidic proteins from the complex samples in proteomics. In addition, the chromatographic behavior of proteins, the effect of the ligand structure and the retention mechanism on this stationary phase were also investigated. 展开更多
关键词 stationary silica ionic selectivity acidic retention proteomics liquids separated ionic
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部