In the past decades,ion conductive polymers and elastomers have drawn worldwide attention for their advanced functions in batteries,electroactive soft robotics,and sensors.Stretchable ionic elastomers with dispersed s...In the past decades,ion conductive polymers and elastomers have drawn worldwide attention for their advanced functions in batteries,electroactive soft robotics,and sensors.Stretchable ionic elastomers with dispersed soft ionic moieties such as ionic liquids have gained remarkable attention as soft sensors,in applications such as the wearable devices that are often called electric skins.A considerable amount of research has been done on ionic-elastomer-based strain,pressure,and shear sensors;however,to the best of our knowledge,this research has not yet been reviewed.In this review,we summarize the materials and performance properties of engineered ionic elastomer actuators and sensors.First,we review three classes of ionic elastomer actuators—namely,ionic polymer metal composites,ionic conducting polymers,and ionic polymer/carbon nanocomposites—and provide perspectives for future actuators,such as adaptive four-dimensional(4D)printed systems and ionic liquid crystal elastomers(iLCEs).Next,we review the state of the art of ionic elastomeric strain and pressure sensors.We also discuss future wearable strain sensors for biomechanical applications and sports performance tracking.Finally,we present the preliminary results of iLCE sensors based on flexoelectric signals and their amplification by integrating them with organic electrochemical transistors.展开更多
An electrochemical sensor incorporating a signal enhancement for the determination of lead (II) ions (Pb2+) was designed on the basis of the thrombin-binding aptamer (TBA) as a molecular recog- nition element a...An electrochemical sensor incorporating a signal enhancement for the determination of lead (II) ions (Pb2+) was designed on the basis of the thrombin-binding aptamer (TBA) as a molecular recog- nition element and ionic liquid supported cerium oxide (CeO2) nanoparticles-carbon nanotubes compo- site modification. The composite comprises nanoparticles CeO2, multi-waU carbon nanotubes (MWNTs) and hydrophobic room temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4). The electrochemical sensors were fabricated by immersing the CeOa-MWNTs-EMIMBF4 modified glassy carbon electrode (GCE) into the solution of TBA probe. In the presence of Pb2+, the TBA probe could form stable G-quartet structure by the specific binding interactions between Pb2+ and TBA. The TBA-bound Pb2+ can be electrochemically reduced, which provides a readout signal for quantitative detection of Pb2+. The reduction peak current is linearly related to the concentration of Pb2+ from 1.0 * 10-8 M to 1.0 * 105 M with a detection limit of 5 * 109 M. This work demonstrates that the CeOz-MWNTs-EMIMBF4 nanocomposite modified GCE provides a promising platform for immobi- lizing the TBA probe and enhancing the sensitivity of the DNA-based sensors.展开更多
基金This work was supported by the National Science Foundation(DMR-1904167).
文摘In the past decades,ion conductive polymers and elastomers have drawn worldwide attention for their advanced functions in batteries,electroactive soft robotics,and sensors.Stretchable ionic elastomers with dispersed soft ionic moieties such as ionic liquids have gained remarkable attention as soft sensors,in applications such as the wearable devices that are often called electric skins.A considerable amount of research has been done on ionic-elastomer-based strain,pressure,and shear sensors;however,to the best of our knowledge,this research has not yet been reviewed.In this review,we summarize the materials and performance properties of engineered ionic elastomer actuators and sensors.First,we review three classes of ionic elastomer actuators—namely,ionic polymer metal composites,ionic conducting polymers,and ionic polymer/carbon nanocomposites—and provide perspectives for future actuators,such as adaptive four-dimensional(4D)printed systems and ionic liquid crystal elastomers(iLCEs).Next,we review the state of the art of ionic elastomeric strain and pressure sensors.We also discuss future wearable strain sensors for biomechanical applications and sports performance tracking.Finally,we present the preliminary results of iLCE sensors based on flexoelectric signals and their amplification by integrating them with organic electrochemical transistors.
基金supports from the National Science Foundations of China (Nos. 20875076 and 21005061)the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20096101120011)+2 种基金the Natural Science Basic Research Plan in Shaanxi Province of China (No.2010JQ2013)the Education Department of Shaanxi Province,China (No. 09JK759)the NWU Graduate Innovation and Creativity Funds (No. 09YSY04)
文摘An electrochemical sensor incorporating a signal enhancement for the determination of lead (II) ions (Pb2+) was designed on the basis of the thrombin-binding aptamer (TBA) as a molecular recog- nition element and ionic liquid supported cerium oxide (CeO2) nanoparticles-carbon nanotubes compo- site modification. The composite comprises nanoparticles CeO2, multi-waU carbon nanotubes (MWNTs) and hydrophobic room temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4). The electrochemical sensors were fabricated by immersing the CeOa-MWNTs-EMIMBF4 modified glassy carbon electrode (GCE) into the solution of TBA probe. In the presence of Pb2+, the TBA probe could form stable G-quartet structure by the specific binding interactions between Pb2+ and TBA. The TBA-bound Pb2+ can be electrochemically reduced, which provides a readout signal for quantitative detection of Pb2+. The reduction peak current is linearly related to the concentration of Pb2+ from 1.0 * 10-8 M to 1.0 * 105 M with a detection limit of 5 * 109 M. This work demonstrates that the CeOz-MWNTs-EMIMBF4 nanocomposite modified GCE provides a promising platform for immobi- lizing the TBA probe and enhancing the sensitivity of the DNA-based sensors.