Progress in the development of phenomenological models for the microscoplc interactions in the halides of polyvalent metals is reviewed, with main attention to neutral and ionized molecular states and to the melts of ...Progress in the development of phenomenological models for the microscoplc interactions in the halides of polyvalent metals is reviewed, with main attention to neutral and ionized molecular states and to the melts of these materials. The following physical problems are discussed: (1)bond bending in the molecules of the alkaline-earth halides, (2) binding of molecular dimers and halogen transfer reactions relevant to the melts of trivalent metal halides, (3) stability of molecular ions in liquid mixtures of polyvalent metal halides and alkali halides, and (4) stabilityof molecular ions and reduced-valence states in molten cryolite under addition of sodium metal.展开更多
Glassy electrolytes could be a potential candidate for all-solid-state batteries that are considered new-generation energy storage devices. As glasses are one of the potential fast ion-conducting electrolytes, progres...Glassy electrolytes could be a potential candidate for all-solid-state batteries that are considered new-generation energy storage devices. As glasses are one of the potential fast ion-conducting electrolytes, progressive advances in glassy electrolytes have been undergoing to get commercial attention. However, the challenges offered by ionic conductivity at room temperature (10<sup>−5</sup> - 10<sup>−3</sup> S∙cm<sup>−1</sup>) in comparison to those of organic liquid electrolytes (10<sup>−2</sup> S∙cm<sup>−1</sup>) hindered the applicability of such electrolytes. To enhance the research development on ionic conductivity, the overall picture of the ionic conductivity of glassy electrolytes is reviewed in this article with a focus on alkali oxide and sulfide glasses. We portray here the techniques applied for alkali ion conductivity enhancement, such as methods of glass preparation, host optimization, doping, and salt addition for enhancing alkali ionic conductivity in the glasses.展开更多
Thin film microbattery is a promising micropower source for its high energy density and good cell performances, and the application of fast lithium ion conducting solids as electrolytes is thus very important. (Li 0....Thin film microbattery is a promising micropower source for its high energy density and good cell performances, and the application of fast lithium ion conducting solids as electrolytes is thus very important. (Li 0.5 La 0.5 )TiO3 (LLTO) thin film electrolytes for thin film microbattery were prepared onto Pt/Si substrates using magnetron sputtering. As-deposited LLTO thin films showed amorphous-like phases and when deposition temperature increases the ionic conductivity raises accordingly. The ionic conductivity of LLTO thin film reaches 8.7×10 -6 S/cm when the deposition temperature is 400℃, which shows that the LLTO thin films deposited by magnetron sputtering are suitable for application as an electrolyte for thin film microbattery.展开更多
A new concept of forming solid electrolyte interphases(SEI) in situ in an ionic conducting Li(1.5)Al(0.5)Ge(1.5)(PO4)3-polypropylene(LAGP-PP) based separator during charging and discharging is proposed and...A new concept of forming solid electrolyte interphases(SEI) in situ in an ionic conducting Li(1.5)Al(0.5)Ge(1.5)(PO4)3-polypropylene(LAGP-PP) based separator during charging and discharging is proposed and demonstrated. This unique structure shows a high ionic conductivity, low interface resistance with electrode, and can suppress the growth of lithium dendrite. The features of forming the SEI in situ are investigated by scanning electron microscopy(SEM) and x-ray photoelectron spectroscopy(XPS). The results confirm that SEI films mainly consist of lithium fluoride and carbonates with various alkyl contents. The cell assembled by using the LAGP-coated separator demonstrates a good cycling performance even at high charging rates, and the lithium dendrites were not observed on the lithium metal electrode. Therefore, the SEI-LAGP-PP separator can be used as a promising flexible solid electrolyte for solid state lithium batteries.展开更多
An overview of ion transport in lithium-ion inorganic solid state electrolytes is presented, aimed at exploring and de signing better electrolyte materials. Ionic conductivity is one of the most important indices of t...An overview of ion transport in lithium-ion inorganic solid state electrolytes is presented, aimed at exploring and de signing better electrolyte materials. Ionic conductivity is one of the most important indices of the performance of inorganic solid state electrolytes. The general definition of solid state electrolytes is presented in terms of their role in a working cell (to convey ions while isolate electrons), and the history of solid electrolyte development is briefly summarized. Ways of using the available theoretical models and experimental methods to characterize lithium-ion transport in solid state elec- trolytes are systematically introduced. Then the various factors that affect ionic conductivity are itemized, including mainly structural disorder, composite materials and interface effects between a solid electrolyte and an electrode. Finally, strategies for future material systems, for synthesis and characterization methods, and for theory and calculation are proposed, aiming to help accelerate the design and development of new solid electrolytes.展开更多
In this paper, the volumetric properties of pure and mixture of ionic liquids are predicted using the developed statistical mechanical equation of state in different temperatures, pressures and mole fractions. The tem...In this paper, the volumetric properties of pure and mixture of ionic liquids are predicted using the developed statistical mechanical equation of state in different temperatures, pressures and mole fractions. The temperature dependent parameters of the equation of state have been calculated using corresponding state correlation based on only the density at 298.15 K as scaling constants. The obtained mean of deviations of modified equation of state for density of all pure ionic liquids for 1662 data points was 0.25%. In addition, the performance of the artificial neural network(ANN) with principle component analysis(PCA) based on back propagation training with28 neurons in hidden layer for predicting of behavior of binary mixtures of ionic liquids was investigated. The AADs of a collection of 568 data points for all binary systems using the EOS and the ANN at various temperatures and mole fractions are 1.03% and 0.68%, respectively. Moreover, the excess molar volume of all binary mixtures is predicted using obtained densities of EOS and ANN, and the results show that these properties have good agreement with literature.展开更多
Pattern recognition methods were used to treat the experimentally measured data of Pitzer’s coefficients of 107 electrolytes, to find the relationships between the ionic structural parameters of these electrolytes an...Pattern recognition methods were used to treat the experimentally measured data of Pitzer’s coefficients of 107 electrolytes, to find the relationships between the ionic structural parameters of these electrolytes and Pitzer’s coefficients. It is found that these relationships can be approximately expressed as linear equations of four dimensionless numbers, (R_+/R_-), (R_++R_-)/Z_+Z_-, (Z_+/Z_-) and (R_t/R_l), where R_+ and R_- are the cationic and anionic radii respectively; Z_+ and Z_- are the cationic and anionic charge numbers respectively, and (R_t/R_l) denotes the nonsphericity of some non-spherical ions. Besides, it is found that the difference of the nuclear magnetic resonance measured rotational relaxation time of water molecules around cations and anions, |Δτ|, has good correlation with Pitzer’s coefficients. The relationships can be interpreted by the theory of corresponding states of ionic solutions. Based on the relationships, an example of application to some hydrometallurgical process was discussed.展开更多
文摘Progress in the development of phenomenological models for the microscoplc interactions in the halides of polyvalent metals is reviewed, with main attention to neutral and ionized molecular states and to the melts of these materials. The following physical problems are discussed: (1)bond bending in the molecules of the alkaline-earth halides, (2) binding of molecular dimers and halogen transfer reactions relevant to the melts of trivalent metal halides, (3) stability of molecular ions in liquid mixtures of polyvalent metal halides and alkali halides, and (4) stabilityof molecular ions and reduced-valence states in molten cryolite under addition of sodium metal.
文摘Glassy electrolytes could be a potential candidate for all-solid-state batteries that are considered new-generation energy storage devices. As glasses are one of the potential fast ion-conducting electrolytes, progressive advances in glassy electrolytes have been undergoing to get commercial attention. However, the challenges offered by ionic conductivity at room temperature (10<sup>−5</sup> - 10<sup>−3</sup> S∙cm<sup>−1</sup>) in comparison to those of organic liquid electrolytes (10<sup>−2</sup> S∙cm<sup>−1</sup>) hindered the applicability of such electrolytes. To enhance the research development on ionic conductivity, the overall picture of the ionic conductivity of glassy electrolytes is reviewed in this article with a focus on alkali oxide and sulfide glasses. We portray here the techniques applied for alkali ion conductivity enhancement, such as methods of glass preparation, host optimization, doping, and salt addition for enhancing alkali ionic conductivity in the glasses.
文摘Thin film microbattery is a promising micropower source for its high energy density and good cell performances, and the application of fast lithium ion conducting solids as electrolytes is thus very important. (Li 0.5 La 0.5 )TiO3 (LLTO) thin film electrolytes for thin film microbattery were prepared onto Pt/Si substrates using magnetron sputtering. As-deposited LLTO thin films showed amorphous-like phases and when deposition temperature increases the ionic conductivity raises accordingly. The ionic conductivity of LLTO thin film reaches 8.7×10 -6 S/cm when the deposition temperature is 400℃, which shows that the LLTO thin films deposited by magnetron sputtering are suitable for application as an electrolyte for thin film microbattery.
基金Project supported by the Beijing Science and Technology ProjectChina(Grant No.Z13111000340000)+1 种基金the National Basic Research Program of China(Grant No.2012CB932900)the National Natural Science Foundation of China(Grant Nos.51325206 and 51421002)
文摘A new concept of forming solid electrolyte interphases(SEI) in situ in an ionic conducting Li(1.5)Al(0.5)Ge(1.5)(PO4)3-polypropylene(LAGP-PP) based separator during charging and discharging is proposed and demonstrated. This unique structure shows a high ionic conductivity, low interface resistance with electrode, and can suppress the growth of lithium dendrite. The features of forming the SEI in situ are investigated by scanning electron microscopy(SEM) and x-ray photoelectron spectroscopy(XPS). The results confirm that SEI films mainly consist of lithium fluoride and carbonates with various alkyl contents. The cell assembled by using the LAGP-coated separator demonstrates a good cycling performance even at high charging rates, and the lithium dendrites were not observed on the lithium metal electrode. Therefore, the SEI-LAGP-PP separator can be used as a promising flexible solid electrolyte for solid state lithium batteries.
基金supported by the National Natural Science Foundation of China(Grant No.51372228)the Shanghai Pujiang Program,China(Grant No.14PJ1403900)the Shanghai Institute of Materials Genome from the Shanghai Municipal Science and Technology Commission,China(Grant No.14DZ2261200)
文摘An overview of ion transport in lithium-ion inorganic solid state electrolytes is presented, aimed at exploring and de signing better electrolyte materials. Ionic conductivity is one of the most important indices of the performance of inorganic solid state electrolytes. The general definition of solid state electrolytes is presented in terms of their role in a working cell (to convey ions while isolate electrons), and the history of solid electrolyte development is briefly summarized. Ways of using the available theoretical models and experimental methods to characterize lithium-ion transport in solid state elec- trolytes are systematically introduced. Then the various factors that affect ionic conductivity are itemized, including mainly structural disorder, composite materials and interface effects between a solid electrolyte and an electrode. Finally, strategies for future material systems, for synthesis and characterization methods, and for theory and calculation are proposed, aiming to help accelerate the design and development of new solid electrolytes.
文摘In this paper, the volumetric properties of pure and mixture of ionic liquids are predicted using the developed statistical mechanical equation of state in different temperatures, pressures and mole fractions. The temperature dependent parameters of the equation of state have been calculated using corresponding state correlation based on only the density at 298.15 K as scaling constants. The obtained mean of deviations of modified equation of state for density of all pure ionic liquids for 1662 data points was 0.25%. In addition, the performance of the artificial neural network(ANN) with principle component analysis(PCA) based on back propagation training with28 neurons in hidden layer for predicting of behavior of binary mixtures of ionic liquids was investigated. The AADs of a collection of 568 data points for all binary systems using the EOS and the ANN at various temperatures and mole fractions are 1.03% and 0.68%, respectively. Moreover, the excess molar volume of all binary mixtures is predicted using obtained densities of EOS and ANN, and the results show that these properties have good agreement with literature.
文摘Pattern recognition methods were used to treat the experimentally measured data of Pitzer’s coefficients of 107 electrolytes, to find the relationships between the ionic structural parameters of these electrolytes and Pitzer’s coefficients. It is found that these relationships can be approximately expressed as linear equations of four dimensionless numbers, (R_+/R_-), (R_++R_-)/Z_+Z_-, (Z_+/Z_-) and (R_t/R_l), where R_+ and R_- are the cationic and anionic radii respectively; Z_+ and Z_- are the cationic and anionic charge numbers respectively, and (R_t/R_l) denotes the nonsphericity of some non-spherical ions. Besides, it is found that the difference of the nuclear magnetic resonance measured rotational relaxation time of water molecules around cations and anions, |Δτ|, has good correlation with Pitzer’s coefficients. The relationships can be interpreted by the theory of corresponding states of ionic solutions. Based on the relationships, an example of application to some hydrometallurgical process was discussed.