Rayleigh-Taylor (R-T) instability is known as the fundamental mechanism of equatorial plasma bubbles (EPBs). However, the sufficient conditions of R-T instability and stability have not yet been derived. In the pr...Rayleigh-Taylor (R-T) instability is known as the fundamental mechanism of equatorial plasma bubbles (EPBs). However, the sufficient conditions of R-T instability and stability have not yet been derived. In the present paper, the sufficient conditions of R-T stability and instability are preliminarily^derived. Linear equations for small perturbation are first obtained from the electron/ion continuity equations, momentum equations, and the current continuity equation in the equatorial ionosphere. The linear equations can be casted as an eigenvalue equation using a normal mode method. The eigenvalue equation is a variable coefficient linear equation that can be solved using a variational approach. With this approach, the sufficient conditions can be obtained as follows: if the minimum systematic eigenvalue is greater than one, the ionosphere is R-T unstable; while if the maximum systematic eigenvalue is less than one, the ionosphere is R-T stable. An approximate numerical method for obtaining the systematic eigenvalues is introduced, and the R-T stable/unstable areas are calculated. Numerical experiments axe designed to validate the sufficient conditions. The results agree with the derived suf- ficient conditions.展开更多
The paper examines the propagation direction and velocity of large-scale traveling ionospheric disturbances (LST1Ds) during extreme geomagnetic storms in the 23rd solar cycle (e.g., October 2003 and November 2003 s...The paper examines the propagation direction and velocity of large-scale traveling ionospheric disturbances (LST1Ds) during extreme geomagnetic storms in the 23rd solar cycle (e.g., October 2003 and November 2003 storms) using GPS observations. In the analysis, the time delay between the vertical total electron content (VTEC) structures at Scott Base, McMurdo, Davis and Casey GPS stations and the distance between these stations were the main parameters in the determination of LSTIDs propagation speed and direction. The observations during October and November 2003 storms show obvious time delay between the total electron content (TEC) enhancement signatures at these stations. The time delay suggests a movement of the ionospheric disturbances from higher to lower latitudes during the October storm with a velocity of 800-1 200 m/s and poleward propagation of LSTIDs during the November storm with a ve- locity of 300-400 m/s. The equatorward or poleward expansion of LSTIDs during the October and November 2003 storms is probably caused by the disturbances of the neutral temperature occurring close to the dayside convection throat or by the neutral wind oscillation induced by atmospheric gravity waves (AGW) launched from the aurora region.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.41575026 and 41175025)
文摘Rayleigh-Taylor (R-T) instability is known as the fundamental mechanism of equatorial plasma bubbles (EPBs). However, the sufficient conditions of R-T instability and stability have not yet been derived. In the present paper, the sufficient conditions of R-T stability and instability are preliminarily^derived. Linear equations for small perturbation are first obtained from the electron/ion continuity equations, momentum equations, and the current continuity equation in the equatorial ionosphere. The linear equations can be casted as an eigenvalue equation using a normal mode method. The eigenvalue equation is a variable coefficient linear equation that can be solved using a variational approach. With this approach, the sufficient conditions can be obtained as follows: if the minimum systematic eigenvalue is greater than one, the ionosphere is R-T unstable; while if the maximum systematic eigenvalue is less than one, the ionosphere is R-T stable. An approximate numerical method for obtaining the systematic eigenvalues is introduced, and the R-T stable/unstable areas are calculated. Numerical experiments axe designed to validate the sufficient conditions. The results agree with the derived suf- ficient conditions.
文摘中国的北斗卫星导航系统(BeiDou navigation satellite system,BDS)是全球导航卫星系统(global navi⁃gation satellite system,GNSS)中唯一全星座提供3频信号的卫星导航系统,其信号频率间共存在3种频间偏差(differential code bias,DCB),分别是DCBC2I⁃C7I、DCBC2I⁃C6I、DCBC7I⁃C6I。理论上,这3种DCB之间存在代数和为零的关系。基于3种频间偏差闭合差约束,加入DCB观测方程,以北斗中轨道(medium earth orbit,MEO)和倾斜地球同步轨道(inclined geosynchronous satellite orbit,IGSO)卫星作为参考卫星,采用附加限制条件的间接平差方法同步估计BDS的3种DCB。选取2018年1月1日—30日多模GNSS实验(multi⁃GNSS experi⁃ment,MGEX)基准站的BDS 3频数据,分别采用附加闭合差约束估计和独立求解两种方法计算北斗二代卫星的3种频间偏差。以中国科学院(Chinese Academy of Sciences,CAS)和德国宇航中心(Deutsches Zentrum für Luft⁃und Raumfahrt,DLR)的DCB产品作为参考,分析了所提方法估计的DCB精度、稳定性及部分典型卫星的DCB时间序列,验证了所提方法对北斗3频DCB估计的适用性和科学性,并通过BDS单频标准单点定位(standard point positioning,SPP)实验验证了DCB对单点定位精度的影响效果。
基金Supported by the Project of Ministry of Science, Technology and Innovation, Malaysia (04-01-02-SF0559)
文摘The paper examines the propagation direction and velocity of large-scale traveling ionospheric disturbances (LST1Ds) during extreme geomagnetic storms in the 23rd solar cycle (e.g., October 2003 and November 2003 storms) using GPS observations. In the analysis, the time delay between the vertical total electron content (VTEC) structures at Scott Base, McMurdo, Davis and Casey GPS stations and the distance between these stations were the main parameters in the determination of LSTIDs propagation speed and direction. The observations during October and November 2003 storms show obvious time delay between the total electron content (TEC) enhancement signatures at these stations. The time delay suggests a movement of the ionospheric disturbances from higher to lower latitudes during the October storm with a velocity of 800-1 200 m/s and poleward propagation of LSTIDs during the November storm with a ve- locity of 300-400 m/s. The equatorward or poleward expansion of LSTIDs during the October and November 2003 storms is probably caused by the disturbances of the neutral temperature occurring close to the dayside convection throat or by the neutral wind oscillation induced by atmospheric gravity waves (AGW) launched from the aurora region.