期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Organosilicon-group-derived silica-ionogel electrolyte for lithium ion batteries 被引量:1
1
作者 YueJiao Li Cui Guo +5 位作者 LuShan Yue WenJie Qu Nan Chen YuJuan Dai RenJie Chen Feng Wu 《Rare Metals》 SCIE EI CAS CSCD 2018年第6期504-509,共6页
In order to avoid leakage problem caused by liquid electrolyte, a new ionogel electrolyte was developed by in situ immobilizing organosilicon-functionalized ionic liquid within a nanoporous silica matrix. The ionic li... In order to avoid leakage problem caused by liquid electrolyte, a new ionogel electrolyte was developed by in situ immobilizing organosilicon-functionalized ionic liquid within a nanoporous silica matrix. The ionic liquid evenly coats on the surface of porous silica and fills in the silica framework pores with no strong chemical interaction. The ionogel electrolyte has the dual advantages of a silica solid support and a wide electrochemical stability window of ionic liquid (4.87 V vs. Li^+/Li). The half-cells assembled with this electrolyte and LiFePO4 electrode have excellent performance at room temperature and 60 ℃. The Li/SiO2-IGE/LiFePO4 cell displays a discharge capacity of 129.1 mAh·g^-1 after 200 charge/discharge cycles at room temperature. 展开更多
关键词 ionogel electrolyte SiO2 Organosilicon group Ionic liquid
原文传递
Boosting lithium batteries under harsh operating conditions by a resilient ionogel with liquid-like ionic conductivity 被引量:2
2
作者 Le Yu Qing Liu +6 位作者 Libin Wang Songtao Guo Qiaomei Hu Yaqian Li Xiwei Lan Zhifang Liu Xianluo Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期408-414,I0009,共8页
New chemistries are being developed to increase the capacity and power of rechargeable batteries. However, the risk of safety issues increases when high-energy batteries using highly active materials encounter harsh o... New chemistries are being developed to increase the capacity and power of rechargeable batteries. However, the risk of safety issues increases when high-energy batteries using highly active materials encounter harsh operating conditions. Here we report on the synthesis of a unique ionogel electrolyte for abuse-tolerant lithium batteries. A hierarchically architected silica/polymer scaffold is designed and fabricated through a facile soft chemistry route, which is competent to confine ionic liquids with superior uptake ability (92.4 wt%). The monolithic ionogel exhibits high conductivity and thermal/mechanical stability, featuring high-temperature elastic modulus and dendrite-free lithium cycling. The Li/LiFePO_(4) pouch cells achieve outstanding cyclability at different temperatures up to 150 ℃, and can sustain cutting, crumpling, and even coupled thermal–mechanical abuses. Moreover, the solid-state lithium batteries with LiNi_(0.60)Co_(0.20)Mn_(0.20)O_(2), LiNi_(0.80)Co_(0.15)Al_(0.05)O_(2), and Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_(2) cathodes demonstrate excellent cycle performances at 60 ℃. These results indicate that the resilient and high-conductivity ionogel electrolyte is promising to realize high-performance lithium batteries with high energy density and safety. 展开更多
关键词 ionogel electrolytes Lithium batteries SAFETY Harsh operating conditions CYCLABILITY
下载PDF
Highly bonded T-Nb2O5/rGO nanohybrids for 4 V quasisolid state asymmetric supercapacitors with improved electrochemical performance 被引量:3
3
作者 Yuzhi Jiao Haitao Zhang +3 位作者 Hailang Zhang Ao Liu Yanxia Liu Suojiang Zhang 《Nano Research》 SCIE EI CAS CSCD 2018年第9期4673-4685,共13页
Orthorhombic niobium pentoxide (T-Nb2O5)/reduced graphene oxide nanohybrids were fabricated via the hydrothermal attachment of Nb2Os nanowires to dispersed graphene oxide nanosheets followed by a high-temperature ph... Orthorhombic niobium pentoxide (T-Nb2O5)/reduced graphene oxide nanohybrids were fabricated via the hydrothermal attachment of Nb2Os nanowires to dispersed graphene oxide nanosheets followed by a high-temperature phase transformation. Electrochemical measurements showed that the nanohybrid anodes possessed enhanced reversible capacity and superior cycling stability compared to those of a pristine T-Nb205 nanowire electrode. Owing to the strong bonds between graphene nanosheets and T-Nb2O5 nanowires, the nanohybrids achieved an initial capacity of 227 mAh·g^-1. Additionally, non-aqueous asymmetric supercapacitors (ASCs) were fabricated with the synthesized nanohybrids as the anode and activated carbon as the cathode. The 3 V Li-ion ASC with a LiPF6-based organic electrolyte achieved an energy density of 45.1 Wh·kg^-1 at 715.2 W·kg^-1. The working potential could be further enhanced to 4 V when a polymer ionogel separator (PVDF-HFP/LiTFSI/EMIMBF4) and formulated ionic liquid electrolyte were employed. Such a quasi-solid state ASC could operate at 60℃ and delivered a maximum energy density of 70 Wh·kg^-1 at 1 kW·kg^-1. 展开更多
关键词 solid-state supercapacitor nanohybrid electrode ionogel polymer electrolyte electrochemicalperformance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部