During the course of ionospheric heating experiments, researchers at the European Incoherent Scatter Scientific Association (EISCAT) observed an apparent electron density enhancement. The enhancement extended over a w...During the course of ionospheric heating experiments, researchers at the European Incoherent Scatter Scientific Association (EISCAT) observed an apparent electron density enhancement. The enhancement extended over a wide range of altitudes, above the reflection altitude of the high-frequency pump wave. However, whether this enhancement actually corresponds to a true enhancement in electron density remains an open question. When the dispersion relation of ion acoustic waves is followed, the frequency ratio of the enhanced ion line to the background ion line suggests that the profile of the effective ion mass may have remained unchanged. Furthermore, the solar radio flux and ion drift velocity indicate no significant changes in the ion species and their densities. In conclusion, the electron density enhancement observed at EISCAT should not, in fact, be considered a true enhancement.展开更多
A theoretical model which describes the small-scale irregularities excited by powerful high frequency (3–30 MHz) electromagnetic wave in ionosphere heating is investigated quantitatively in this paper. The model is...A theoretical model which describes the small-scale irregularities excited by powerful high frequency (3–30 MHz) electromagnetic wave in ionosphere heating is investigated quantitatively in this paper. The model is based on the transport equation in magnetic plasma and mode conversion from electromagnetic wave to electrostatic wave in ionospheric modification.Threshold electric field for exciting small-scale (meter scale) irregularities and spatial spectra of irregularities are analytically calculated by this model. The results indicate that background electron density and geomagnetic field play an important role for the threshold electric field and the spatial scale of the electron density irregularities. The results demonstrate that the electric field threshold increases with the decrease of the spatial scale of the irregularities. For exciting meter scale irregularities, the threshold electric field is about tens of mV m^(-1). The theoretical results are consistent with those of the experiments.展开更多
Observations are presented of the phenomenon of the enhancement in electron density and temperature that is caused by a powerful pump wave at a frequency near the fifth gyrofrequency. The observations show that the ap...Observations are presented of the phenomenon of the enhancement in electron density and temperature that is caused by a powerful pump wave at a frequency near the fifth gyrofrequency. The observations show that the apparent enhancement in electron density extending over a wide altitude range and the enhancement in electron temperature around the reflection altitude occur as a function of pump frequency. Additionally, the plasma line spectra show unusual behavior as a function of pump frequency. In conclusion, the upper hybrid wave resonance excited by the pump wave plays a dominating role and leads to the enhancement in electron temperature at the upper hybrid altitude. The phenomenon of apparent enhancement in electron density does not correspond to the true enhancement in electron density, this may be due to some mechanism that preferentially involves the plasma transport process and leads to the strong backscatter of radar wave along the magnetic line, which remains to be determined.展开更多
Observation data recorded by the European Incoherent Scatter Scientific Association in TromsФ, Norway in August 2009 were analyzed to determine the heating effects in polar summer ionospheric modification experiments...Observation data recorded by the European Incoherent Scatter Scientific Association in TromsФ, Norway in August 2009 were analyzed to determine the heating effects in polar summer ionospheric modification experiments. There are two types of increases in electron temperature: large relative increases in a narrow range near 150 km and greater absolute increases in a wider range at 150-400 km. The percentage increase in temperature linearly increases with heating power, but the rate of increase decreases with increasing pump frequency. A clear two-dimensional distribution was found for the measurement made on August 15, and the beating effects are greater closer to the direction of the geomagnetic field. The heating effects obviously depend on the angle between the heating beam and geomagnetic field; as the angle increases, the heating effect decreases.展开更多
In this study,we present three experiments carried out at the EISCAT(European Incoherent Scatter Scientific Association)heating facility on October 29 and 30,2015.The results from the first experiment showed overshoot...In this study,we present three experiments carried out at the EISCAT(European Incoherent Scatter Scientific Association)heating facility on October 29 and 30,2015.The results from the first experiment showed overshoot during the O-mode heating period.The second experiment,which used cold-start X-mode heating,showed the generation of parametric decay instability,whereas overshoot was not observed.The third experiment used power-stepped X-mode heating with noticeable O-mode wave leakage.Parametric decay instability and oscillating two-stream instability were generated at the O-mode reflection height without the overshoot effect,which implies suppression of the thermal parametric instability with X-mode heating.We propose that the electron temperature increased because X-mode heating below the upper hybrid height decreased the growth rate of the thermal parametric instability.展开更多
In this paper,an analytical model is used to analyze the modulated polar mesospheric winter echoes(PMWE).The winter parameters were introduced to simulate the effects of different parameters during the artificial elec...In this paper,an analytical model is used to analyze the modulated polar mesospheric winter echoes(PMWE).The winter parameters were introduced to simulate the effects of different parameters during the artificial electron heating of PMWE.The important role of the charged dust particle in the creation of PMWE is confirmed again.It is found that during the heating of PMWE,the increases of the dust size,dust charge,electron temperature,initial electron density,and ion-neutral collision frequency cause the increase of the electron density irregularity,and hence the PMWE strength.However,with increasing the dust density,the electron density irregularity and the PMWE strength decrease.展开更多
The observation of ultra-high frequency radar during an ionospheric heating experiment carried out at TromsФ site of European Incoherent Scatter Scientific Association, Norway, is analyzed. When pump is operating sli...The observation of ultra-high frequency radar during an ionospheric heating experiment carried out at TromsФ site of European Incoherent Scatter Scientific Association, Norway, is analyzed. When pump is operating slightly above the fifth electron gyrofrequency, some strong enhancements in radar echo and electron density occur in a wide altitude range and are in sync with the shifting and spread of plasma line around the reflection altitude, which may be due to the focusing or collimating of radar wave by irregularities. While some strong enhancements in electron density and radar echo around the reflection altitude do not correspond to the true increase in electron density, but due to the enhanced ion acoustic wave by parametric decay instability and oscillation two stream instability. In addition, the different heating rates and cooling rates at the pump frequencies below, around and above fifth gyrofrequency respectively result in the dependence of the enhancements in electron temperature on the pump frequency.展开更多
The observation of ultra high frequency radar during an ionospheric experiment carrying out at the European Incoherent Scatter Scientific Association, demonstrates a systematic variation in the altitude of the pump en...The observation of ultra high frequency radar during an ionospheric experiment carrying out at the European Incoherent Scatter Scientific Association, demonstrates a systematic variation in the altitude of the pump enhanced ion line, which is quite remarkably dependent on the pump frequency, that is, when the pump frequency sweeps above the fifth gyroharrnonic, the altitude of the enhanced ion line is ~3 to ~6 kin lower than that at the pump frequency very close to the fifth gyroharmonic. The analysis shows that the systematic variation in the altitude of the pump enhanced ion line is principally dependent on the enhanced electron temperature, although the changes in the profile of the electron density brought about by the ionospheric heating are not independent of those systematic altitude variations.展开更多
This paper introduces a new approach for the determination of the source region of beat wave(BW)modulation.This type of modulation is achieved by transmitting high-frequency(HF)continuous waves with a frequency differ...This paper introduces a new approach for the determination of the source region of beat wave(BW)modulation.This type of modulation is achieved by transmitting high-frequency(HF)continuous waves with a frequency difference f,where f is the frequency of modulated ELF/VLF(extremely low frequency/very low frequency)waves from two sub-arrays of a high power HF transmitter.Despite the advantages of BW modulation in terms of generating more stable ELF/VLF signal and high modulation efficiency,there exists a controversy on the physical mechanism of BW and its source region.In this paper,the two controversial theories,i.e.,BW based on D-E region thermal nonlinearity and BW based on F region ponderomotive nonlinearity are examined for cases where each of these two theories exists exclusively or both of them exist simultaneously.According to the analysis and simulation results presented in this paper,it is found that the generated VLF signal amplitude exhibits significant variation as a function of HF frequency in different source regions.Therefore,this characteristic can be utilized as a potential new approach to determine the physical mechanism and source location of BW.展开更多
An ionospheric heating experiment involving an O mode pump wave was carried out at European Incoherent Scatter Scientific Association site in Troms?. The observation of the ultra high frequency radar illustrates the ...An ionospheric heating experiment involving an O mode pump wave was carried out at European Incoherent Scatter Scientific Association site in Troms?. The observation of the ultra high frequency radar illustrates the systematic variations of the enhanced ion line and plasma line in altitude and intensity as a function of the pump frequency. The analysis shows that those altitude variations are due to the thermal effect, and the intensity variations of the enhanced ion line are dependent on whether or not the enhanced ion acoustic wave satisfy the Bragg condition of radar. Moreover, a prediction that if the enhancement in electron temperature is suppressed,those systematic variations will be absent, is given.展开更多
A numerical model has been developed.Based on the numerical simulation results,the spatial effects of the ionosphere,mainly consisting of the change on electron density(ED)and electron temperature(ET),heated by the hi...A numerical model has been developed.Based on the numerical simulation results,the spatial effects of the ionosphere,mainly consisting of the change on electron density(ED)and electron temperature(ET),heated by the high frequency(HF)pump wave have been analyzed quantitatively.Results are presented as the space-time evolution regulation on the main parameters of the ionosphere resulted by the HF heating waves under the different heat-conditions,just as different regions,such as high latitude and mid-low latitude;different heating power or frequency,such as underdense heating and over-dense heating and regions at different altitudes.The heating effects in different regions with different heating conditions have been presented in figures.Finally,some primary conclusions are given by comparing the simulation results with experimental observation.展开更多
基金supported by research organizations in China (CRIRP), Finland (SA), Japan (NIPR and STEL), Norway (NFR), Sweden (VR), and the United Kingdom (NERC)supported by the Taishan Scholars Project of Shandong Province (Grant No. ts20190968)supported by the foundation of National Key Laboratory of Electromagnetic Environment (Grant No. 6142403230303)
文摘During the course of ionospheric heating experiments, researchers at the European Incoherent Scatter Scientific Association (EISCAT) observed an apparent electron density enhancement. The enhancement extended over a wide range of altitudes, above the reflection altitude of the high-frequency pump wave. However, whether this enhancement actually corresponds to a true enhancement in electron density remains an open question. When the dispersion relation of ion acoustic waves is followed, the frequency ratio of the enhanced ion line to the background ion line suggests that the profile of the effective ion mass may have remained unchanged. Furthermore, the solar radio flux and ion drift velocity indicate no significant changes in the ion species and their densities. In conclusion, the electron density enhancement observed at EISCAT should not, in fact, be considered a true enhancement.
基金supported by National Natural Science Foundation of China(NSFC grants 41204111,4157414641774162 and 41704155)China Postdoctoral Science Foundation(2017M622504)
文摘A theoretical model which describes the small-scale irregularities excited by powerful high frequency (3–30 MHz) electromagnetic wave in ionosphere heating is investigated quantitatively in this paper. The model is based on the transport equation in magnetic plasma and mode conversion from electromagnetic wave to electrostatic wave in ionospheric modification.Threshold electric field for exciting small-scale (meter scale) irregularities and spatial spectra of irregularities are analytically calculated by this model. The results indicate that background electron density and geomagnetic field play an important role for the threshold electric field and the spatial scale of the electron density irregularities. The results demonstrate that the electric field threshold increases with the decrease of the spatial scale of the irregularities. For exciting meter scale irregularities, the threshold electric field is about tens of mV m^(-1). The theoretical results are consistent with those of the experiments.
基金supported by National Natural Science Foundation of China(No.40831062)
文摘Observations are presented of the phenomenon of the enhancement in electron density and temperature that is caused by a powerful pump wave at a frequency near the fifth gyrofrequency. The observations show that the apparent enhancement in electron density extending over a wide altitude range and the enhancement in electron temperature around the reflection altitude occur as a function of pump frequency. Additionally, the plasma line spectra show unusual behavior as a function of pump frequency. In conclusion, the upper hybrid wave resonance excited by the pump wave plays a dominating role and leads to the enhancement in electron temperature at the upper hybrid altitude. The phenomenon of apparent enhancement in electron density does not correspond to the true enhancement in electron density, this may be due to some mechanism that preferentially involves the plasma transport process and leads to the strong backscatter of radar wave along the magnetic line, which remains to be determined.
基金supported by the National Natural Science Foundation of China (Grant nos. 40831062,41004065)National Supportive Project of Science and Technology of China (Grant no.2006BAB18B06)the State Key Laboratory of Space Weather (Grant no.08262DAA4S) and National Key Laboratory of Electromagnetic Environment
文摘Observation data recorded by the European Incoherent Scatter Scientific Association in TromsФ, Norway in August 2009 were analyzed to determine the heating effects in polar summer ionospheric modification experiments. There are two types of increases in electron temperature: large relative increases in a narrow range near 150 km and greater absolute increases in a wider range at 150-400 km. The percentage increase in temperature linearly increases with heating power, but the rate of increase decreases with increasing pump frequency. A clear two-dimensional distribution was found for the measurement made on August 15, and the beating effects are greater closer to the direction of the geomagnetic field. The heating effects obviously depend on the angle between the heating beam and geomagnetic field; as the angle increases, the heating effect decreases.
基金EISCAT is an international scientific association supported by research organizations in China(China Research Institute of Radiowave Propagation(CRIRP)),Finland(Suomen Akatemia(SA)),Japan(National Institute of Polar Research(NIPR)and Solar-Terrestrial Environment Laboratory(STEL)),Norway(The Research Council of Norway(NFR)),Sweden(Swedish Research Council(VR)),and the United Kingdom(Natural Environment Research Council(NERC)).This work was supported by the National Natural Science Foundation of China(NSFC,grants 41204111,41574146,41774162,and 41704155)the China Postdoctoral Science Foundation(grant 2017M622504).The experiment described in this work was carried out by the Russian team led by N.F.Blagoveshchenskaya.The data used in this research are available through the EISCAT Madrigal database(http://www.eiscat.se/madrigal/)and EISCAT Dynasonde database(https://dynserv.eiscat.uit.no/).
文摘In this study,we present three experiments carried out at the EISCAT(European Incoherent Scatter Scientific Association)heating facility on October 29 and 30,2015.The results from the first experiment showed overshoot during the O-mode heating period.The second experiment,which used cold-start X-mode heating,showed the generation of parametric decay instability,whereas overshoot was not observed.The third experiment used power-stepped X-mode heating with noticeable O-mode wave leakage.Parametric decay instability and oscillating two-stream instability were generated at the O-mode reflection height without the overshoot effect,which implies suppression of the thermal parametric instability with X-mode heating.We propose that the electron temperature increased because X-mode heating below the upper hybrid height decreased the growth rate of the thermal parametric instability.
基金supported by the National Natural Science Foundation of China under Grants No. 61671116 and No. 11905026Fundamental Research Funds for the Central Universities under Grants No. ZYGX2019Z006 and No. ZYGX2019J012。
文摘In this paper,an analytical model is used to analyze the modulated polar mesospheric winter echoes(PMWE).The winter parameters were introduced to simulate the effects of different parameters during the artificial electron heating of PMWE.The important role of the charged dust particle in the creation of PMWE is confirmed again.It is found that during the heating of PMWE,the increases of the dust size,dust charge,electron temperature,initial electron density,and ion-neutral collision frequency cause the increase of the electron density irregularity,and hence the PMWE strength.However,with increasing the dust density,the electron density irregularity and the PMWE strength decrease.
文摘The observation of ultra-high frequency radar during an ionospheric heating experiment carried out at TromsФ site of European Incoherent Scatter Scientific Association, Norway, is analyzed. When pump is operating slightly above the fifth electron gyrofrequency, some strong enhancements in radar echo and electron density occur in a wide altitude range and are in sync with the shifting and spread of plasma line around the reflection altitude, which may be due to the focusing or collimating of radar wave by irregularities. While some strong enhancements in electron density and radar echo around the reflection altitude do not correspond to the true increase in electron density, but due to the enhanced ion acoustic wave by parametric decay instability and oscillation two stream instability. In addition, the different heating rates and cooling rates at the pump frequencies below, around and above fifth gyrofrequency respectively result in the dependence of the enhancements in electron temperature on the pump frequency.
基金supported by China(China Research Institute of Radiowave Propagation)Finland(Suomen Akatemia of Finland)+3 种基金Japan(the National Institute of Polar Research of Japan and Institutefor Space-Earth Environmental Research at Nagoya University)Norway(Norges Forkningsrad of Norway)Sweden(the Swedish Research Council)the UK(the Natural Environment Research Council)
文摘The observation of ultra high frequency radar during an ionospheric experiment carrying out at the European Incoherent Scatter Scientific Association, demonstrates a systematic variation in the altitude of the pump enhanced ion line, which is quite remarkably dependent on the pump frequency, that is, when the pump frequency sweeps above the fifth gyroharrnonic, the altitude of the enhanced ion line is ~3 to ~6 kin lower than that at the pump frequency very close to the fifth gyroharmonic. The analysis shows that the systematic variation in the altitude of the pump enhanced ion line is principally dependent on the enhanced electron temperature, although the changes in the profile of the electron density brought about by the ionospheric heating are not independent of those systematic altitude variations.
基金supported by the National Natural Science Foundation of China(Grant No.41804149)China Scholarship Council。
文摘This paper introduces a new approach for the determination of the source region of beat wave(BW)modulation.This type of modulation is achieved by transmitting high-frequency(HF)continuous waves with a frequency difference f,where f is the frequency of modulated ELF/VLF(extremely low frequency/very low frequency)waves from two sub-arrays of a high power HF transmitter.Despite the advantages of BW modulation in terms of generating more stable ELF/VLF signal and high modulation efficiency,there exists a controversy on the physical mechanism of BW and its source region.In this paper,the two controversial theories,i.e.,BW based on D-E region thermal nonlinearity and BW based on F region ponderomotive nonlinearity are examined for cases where each of these two theories exists exclusively or both of them exist simultaneously.According to the analysis and simulation results presented in this paper,it is found that the generated VLF signal amplitude exhibits significant variation as a function of HF frequency in different source regions.Therefore,this characteristic can be utilized as a potential new approach to determine the physical mechanism and source location of BW.
基金supported by China(China Research Institute of Radio Wave Propagation)Finland(Suomen Akatemia of Finland)+3 种基金Japan(the National Institute of Polar Research of Japan and Institute for Space-Earth Environmental Research at Nagoya University)Norway(Norges Forkningsrad of Norway)Sweden(the Swedish Research Council)the UK(the Natural Environment Research Council)
文摘An ionospheric heating experiment involving an O mode pump wave was carried out at European Incoherent Scatter Scientific Association site in Troms?. The observation of the ultra high frequency radar illustrates the systematic variations of the enhanced ion line and plasma line in altitude and intensity as a function of the pump frequency. The analysis shows that those altitude variations are due to the thermal effect, and the intensity variations of the enhanced ion line are dependent on whether or not the enhanced ion acoustic wave satisfy the Bragg condition of radar. Moreover, a prediction that if the enhancement in electron temperature is suppressed,those systematic variations will be absent, is given.
基金supported by the Hi-Tech Research and Development Program of China(No.2004733AA101).
文摘A numerical model has been developed.Based on the numerical simulation results,the spatial effects of the ionosphere,mainly consisting of the change on electron density(ED)and electron temperature(ET),heated by the high frequency(HF)pump wave have been analyzed quantitatively.Results are presented as the space-time evolution regulation on the main parameters of the ionosphere resulted by the HF heating waves under the different heat-conditions,just as different regions,such as high latitude and mid-low latitude;different heating power or frequency,such as underdense heating and over-dense heating and regions at different altitudes.The heating effects in different regions with different heating conditions have been presented in figures.Finally,some primary conclusions are given by comparing the simulation results with experimental observation.