针对BDS系统GEO卫星存在伪距长周期多路径效应引起的系统性偏差LPME(Long Period Multipath Effect)的特点,提出顾及LPME的BDS非组合PPP数学模型。其中,为简化运算和提高法方程结构强度,将LPME参数在1 d内视为常数估计,对GEO卫星和MEO/I...针对BDS系统GEO卫星存在伪距长周期多路径效应引起的系统性偏差LPME(Long Period Multipath Effect)的特点,提出顾及LPME的BDS非组合PPP数学模型。其中,为简化运算和提高法方程结构强度,将LPME参数在1 d内视为常数估计,对GEO卫星和MEO/IGSO卫星观测值赋予相同的权重。选取2015年年积日为150的29个MEGX跟踪站数据进行验证,并设置两组实验对比模型。结果表明:相较于降低GEO卫星观测值权重或者直接忽略GEO卫星的定位模型,新提出模型能够有效减少PPP的伪距残差、增加数据利用率、缩短收敛时间,并能在E、N、U方向带来10%左右的定位精度方面的提升。展开更多
The mining area deformation monitoring theory and method using precise point positioning (PPP) ambi- guity resolution (AR) were studied, and an ambiguity fixing model with satellite and receiver combina- tion phas...The mining area deformation monitoring theory and method using precise point positioning (PPP) ambi- guity resolution (AR) were studied, and an ambiguity fixing model with satellite and receiver combina- tion phase delay (CPD) was proposed for zero-differenced PPP ambiguity fixing and its corresponding formula derivation was given. The data processing results for I h at six IGS stations in China show that 93% of ambiguities can be fixed within 10 min and all ambiguities can be fixed within 15 min. After ambi- guity fixing, the positioning accuracy is improved by more than 85% in the E and N directions, with abso- lute positioning accuracy reaching millimeter level, and it was improved by 70% in the U direction, reaching centimeter level; the proposed zero-differenced ambiguity fixing model can effectively improve the convergence rate and positioning accuracy in PPP. Data monitoring continuously conducted for half a year at four COPS stations of Shanxi China Coal Pingshuo Group validated the feasibility of using PPP in mining area deformation monitoring.展开更多
文摘针对BDS系统GEO卫星存在伪距长周期多路径效应引起的系统性偏差LPME(Long Period Multipath Effect)的特点,提出顾及LPME的BDS非组合PPP数学模型。其中,为简化运算和提高法方程结构强度,将LPME参数在1 d内视为常数估计,对GEO卫星和MEO/IGSO卫星观测值赋予相同的权重。选取2015年年积日为150的29个MEGX跟踪站数据进行验证,并设置两组实验对比模型。结果表明:相较于降低GEO卫星观测值权重或者直接忽略GEO卫星的定位模型,新提出模型能够有效减少PPP的伪距残差、增加数据利用率、缩短收敛时间,并能在E、N、U方向带来10%左右的定位精度方面的提升。
基金Financial support from the National Natural Science Foundation of China (No. 41074010)the Jiangsu Innovation Works Fund of Postgraduate (No. CXZZ11-0299)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘The mining area deformation monitoring theory and method using precise point positioning (PPP) ambi- guity resolution (AR) were studied, and an ambiguity fixing model with satellite and receiver combina- tion phase delay (CPD) was proposed for zero-differenced PPP ambiguity fixing and its corresponding formula derivation was given. The data processing results for I h at six IGS stations in China show that 93% of ambiguities can be fixed within 10 min and all ambiguities can be fixed within 15 min. After ambi- guity fixing, the positioning accuracy is improved by more than 85% in the E and N directions, with abso- lute positioning accuracy reaching millimeter level, and it was improved by 70% in the U direction, reaching centimeter level; the proposed zero-differenced ambiguity fixing model can effectively improve the convergence rate and positioning accuracy in PPP. Data monitoring continuously conducted for half a year at four COPS stations of Shanxi China Coal Pingshuo Group validated the feasibility of using PPP in mining area deformation monitoring.