During the course of ionospheric heating experiments, researchers at the European Incoherent Scatter Scientific Association (EISCAT) observed an apparent electron density enhancement. The enhancement extended over a w...During the course of ionospheric heating experiments, researchers at the European Incoherent Scatter Scientific Association (EISCAT) observed an apparent electron density enhancement. The enhancement extended over a wide range of altitudes, above the reflection altitude of the high-frequency pump wave. However, whether this enhancement actually corresponds to a true enhancement in electron density remains an open question. When the dispersion relation of ion acoustic waves is followed, the frequency ratio of the enhanced ion line to the background ion line suggests that the profile of the effective ion mass may have remained unchanged. Furthermore, the solar radio flux and ion drift velocity indicate no significant changes in the ion species and their densities. In conclusion, the electron density enhancement observed at EISCAT should not, in fact, be considered a true enhancement.展开更多
Observations are presented of the phenomenon of the enhancement in electron density and temperature that is caused by a powerful pump wave at a frequency near the fifth gyrofrequency. The observations show that the ap...Observations are presented of the phenomenon of the enhancement in electron density and temperature that is caused by a powerful pump wave at a frequency near the fifth gyrofrequency. The observations show that the apparent enhancement in electron density extending over a wide altitude range and the enhancement in electron temperature around the reflection altitude occur as a function of pump frequency. Additionally, the plasma line spectra show unusual behavior as a function of pump frequency. In conclusion, the upper hybrid wave resonance excited by the pump wave plays a dominating role and leads to the enhancement in electron temperature at the upper hybrid altitude. The phenomenon of apparent enhancement in electron density does not correspond to the true enhancement in electron density, this may be due to some mechanism that preferentially involves the plasma transport process and leads to the strong backscatter of radar wave along the magnetic line, which remains to be determined.展开更多
The observation of ultra-high frequency radar during an ionospheric heating experiment carried out at TromsФ site of European Incoherent Scatter Scientific Association, Norway, is analyzed. When pump is operating sli...The observation of ultra-high frequency radar during an ionospheric heating experiment carried out at TromsФ site of European Incoherent Scatter Scientific Association, Norway, is analyzed. When pump is operating slightly above the fifth electron gyrofrequency, some strong enhancements in radar echo and electron density occur in a wide altitude range and are in sync with the shifting and spread of plasma line around the reflection altitude, which may be due to the focusing or collimating of radar wave by irregularities. While some strong enhancements in electron density and radar echo around the reflection altitude do not correspond to the true increase in electron density, but due to the enhanced ion acoustic wave by parametric decay instability and oscillation two stream instability. In addition, the different heating rates and cooling rates at the pump frequencies below, around and above fifth gyrofrequency respectively result in the dependence of the enhancements in electron temperature on the pump frequency.展开更多
In this paper,an analytical model is used to analyze the modulated polar mesospheric winter echoes(PMWE).The winter parameters were introduced to simulate the effects of different parameters during the artificial elec...In this paper,an analytical model is used to analyze the modulated polar mesospheric winter echoes(PMWE).The winter parameters were introduced to simulate the effects of different parameters during the artificial electron heating of PMWE.The important role of the charged dust particle in the creation of PMWE is confirmed again.It is found that during the heating of PMWE,the increases of the dust size,dust charge,electron temperature,initial electron density,and ion-neutral collision frequency cause the increase of the electron density irregularity,and hence the PMWE strength.However,with increasing the dust density,the electron density irregularity and the PMWE strength decrease.展开更多
Observation data recorded by the European Incoherent Scatter Scientific Association in TromsФ, Norway in August 2009 were analyzed to determine the heating effects in polar summer ionospheric modification experiments...Observation data recorded by the European Incoherent Scatter Scientific Association in TromsФ, Norway in August 2009 were analyzed to determine the heating effects in polar summer ionospheric modification experiments. There are two types of increases in electron temperature: large relative increases in a narrow range near 150 km and greater absolute increases in a wider range at 150-400 km. The percentage increase in temperature linearly increases with heating power, but the rate of increase decreases with increasing pump frequency. A clear two-dimensional distribution was found for the measurement made on August 15, and the beating effects are greater closer to the direction of the geomagnetic field. The heating effects obviously depend on the angle between the heating beam and geomagnetic field; as the angle increases, the heating effect decreases.展开更多
基于IGS提供的TEC数据,研究了2003年10月大磁暴期间的暴时密度增强(Storm EnhancedDensity,SED)现象;利用GPS观测数据,计算出ROTI(Standard deviations of ROT)指数,分析了SED边界附近电离层小尺度不均匀体结构的时间和空间演变.研究表...基于IGS提供的TEC数据,研究了2003年10月大磁暴期间的暴时密度增强(Storm EnhancedDensity,SED)现象;利用GPS观测数据,计算出ROTI(Standard deviations of ROT)指数,分析了SED边界附近电离层小尺度不均匀体结构的时间和空间演变.研究表明,在磁暴主相期间SED边界附近不均匀体随着磁暴的发展逐渐增多;在主相的中后期不均匀体的分布密集度达到最大;在恢复相期间,不均匀体分布很少;随着磁暴的发展,不均匀体开始主要集中在40°~45°N范围内,随后向高纬漂移,主要集中在45°~55°N范围内.展开更多
基金supported by research organizations in China (CRIRP), Finland (SA), Japan (NIPR and STEL), Norway (NFR), Sweden (VR), and the United Kingdom (NERC)supported by the Taishan Scholars Project of Shandong Province (Grant No. ts20190968)supported by the foundation of National Key Laboratory of Electromagnetic Environment (Grant No. 6142403230303)
文摘During the course of ionospheric heating experiments, researchers at the European Incoherent Scatter Scientific Association (EISCAT) observed an apparent electron density enhancement. The enhancement extended over a wide range of altitudes, above the reflection altitude of the high-frequency pump wave. However, whether this enhancement actually corresponds to a true enhancement in electron density remains an open question. When the dispersion relation of ion acoustic waves is followed, the frequency ratio of the enhanced ion line to the background ion line suggests that the profile of the effective ion mass may have remained unchanged. Furthermore, the solar radio flux and ion drift velocity indicate no significant changes in the ion species and their densities. In conclusion, the electron density enhancement observed at EISCAT should not, in fact, be considered a true enhancement.
基金supported by National Natural Science Foundation of China(No.40831062)
文摘Observations are presented of the phenomenon of the enhancement in electron density and temperature that is caused by a powerful pump wave at a frequency near the fifth gyrofrequency. The observations show that the apparent enhancement in electron density extending over a wide altitude range and the enhancement in electron temperature around the reflection altitude occur as a function of pump frequency. Additionally, the plasma line spectra show unusual behavior as a function of pump frequency. In conclusion, the upper hybrid wave resonance excited by the pump wave plays a dominating role and leads to the enhancement in electron temperature at the upper hybrid altitude. The phenomenon of apparent enhancement in electron density does not correspond to the true enhancement in electron density, this may be due to some mechanism that preferentially involves the plasma transport process and leads to the strong backscatter of radar wave along the magnetic line, which remains to be determined.
文摘The observation of ultra-high frequency radar during an ionospheric heating experiment carried out at TromsФ site of European Incoherent Scatter Scientific Association, Norway, is analyzed. When pump is operating slightly above the fifth electron gyrofrequency, some strong enhancements in radar echo and electron density occur in a wide altitude range and are in sync with the shifting and spread of plasma line around the reflection altitude, which may be due to the focusing or collimating of radar wave by irregularities. While some strong enhancements in electron density and radar echo around the reflection altitude do not correspond to the true increase in electron density, but due to the enhanced ion acoustic wave by parametric decay instability and oscillation two stream instability. In addition, the different heating rates and cooling rates at the pump frequencies below, around and above fifth gyrofrequency respectively result in the dependence of the enhancements in electron temperature on the pump frequency.
基金supported by the National Natural Science Foundation of China under Grants No. 61671116 and No. 11905026Fundamental Research Funds for the Central Universities under Grants No. ZYGX2019Z006 and No. ZYGX2019J012。
文摘In this paper,an analytical model is used to analyze the modulated polar mesospheric winter echoes(PMWE).The winter parameters were introduced to simulate the effects of different parameters during the artificial electron heating of PMWE.The important role of the charged dust particle in the creation of PMWE is confirmed again.It is found that during the heating of PMWE,the increases of the dust size,dust charge,electron temperature,initial electron density,and ion-neutral collision frequency cause the increase of the electron density irregularity,and hence the PMWE strength.However,with increasing the dust density,the electron density irregularity and the PMWE strength decrease.
基金supported by the National Natural Science Foundation of China (Grant nos. 40831062,41004065)National Supportive Project of Science and Technology of China (Grant no.2006BAB18B06)the State Key Laboratory of Space Weather (Grant no.08262DAA4S) and National Key Laboratory of Electromagnetic Environment
文摘Observation data recorded by the European Incoherent Scatter Scientific Association in TromsФ, Norway in August 2009 were analyzed to determine the heating effects in polar summer ionospheric modification experiments. There are two types of increases in electron temperature: large relative increases in a narrow range near 150 km and greater absolute increases in a wider range at 150-400 km. The percentage increase in temperature linearly increases with heating power, but the rate of increase decreases with increasing pump frequency. A clear two-dimensional distribution was found for the measurement made on August 15, and the beating effects are greater closer to the direction of the geomagnetic field. The heating effects obviously depend on the angle between the heating beam and geomagnetic field; as the angle increases, the heating effect decreases.
文摘基于IGS提供的TEC数据,研究了2003年10月大磁暴期间的暴时密度增强(Storm EnhancedDensity,SED)现象;利用GPS观测数据,计算出ROTI(Standard deviations of ROT)指数,分析了SED边界附近电离层小尺度不均匀体结构的时间和空间演变.研究表明,在磁暴主相期间SED边界附近不均匀体随着磁暴的发展逐渐增多;在主相的中后期不均匀体的分布密集度达到最大;在恢复相期间,不均匀体分布很少;随着磁暴的发展,不均匀体开始主要集中在40°~45°N范围内,随后向高纬漂移,主要集中在45°~55°N范围内.