期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Storm-Time Ionospheric Disturbances Monitored by GPS Beacon Measurements 被引量:1
1
作者 Pei Xiao hong, Yu Sheng bing, Xu Ji sheng, Ma Shu\|ying College of Electronic Information, Wuhan University, Wuhan 430072,China 《Wuhan University Journal of Natural Sciences》 EI CAS 2001年第3期687-693,共7页
The Total Electron Content (TEC) during three great storms, from April to August 2000, was collected by means of a GPS receiver located in Jingzhou (30.4° N, 112.2° E). The time-latitude-dependent features o... The Total Electron Content (TEC) during three great storms, from April to August 2000, was collected by means of a GPS receiver located in Jingzhou (30.4° N, 112.2° E). The time-latitude-dependent features of ionospheric storms are identified using TEC difference images based on the deviations of TEC during storm relative to quiet time. The responses of ionospheric TEC to magnetic storms were analyzed. The results show that: 1) In middle and low latitude, ionospheric storms effects are more apparent in local day time than at night: 2) Ionospheric storm effects are more dominant near the hump of the equatorial anomaly region than in other regions of TEC measurements; 3) The positive effects during the main phase of ionospheric storm may be caused by electric fields in low latitude; 4) During the recovery period of ionospheric storm, the negative phase of storm may be due to the perturbation of the neutral gas composition. 展开更多
关键词 global positioning system IONOSPHERE total electron content magnetic storm ionospheric storm
下载PDF
A MODEL FOR THE VARIATIONS OF THE CRITICAL FREQUENCY OF F_2 LAYER DURING THE NEGATIVE PHASES OF IONOSPHERIC STORMS
2
作者 涂传诒 贾志华 《Science China Mathematics》 SCIE 1983年第5期549-560,共12页
A model for the negative phase of ionospheric storms in middle latitudes is presented. It is assumed that there will be molecule enriched air in the thermosphere above the auroral oval during the period of the main ph... A model for the negative phase of ionospheric storms in middle latitudes is presented. It is assumed that there will be molecule enriched air in the thermosphere above the auroral oval during the period of the main phase of a magnetic storm. The molecule enriched air is carried to the middle latitudes by thermospheric neutral wind, and at the same time it diffuses away. When the molecule enriched air arrives at the F2 layer above a station, the electron loss rate in the F2 layer increases, the electron density decreases and then the negative phase at the station begins. We have calculated the variations of the fo F2 following magnetic storms for Manzhouli (29.5°N, 117.5°E), Freiburg (48°N, 07°E) and Billerica (43°N, 71°W) respectively. The results agree very well with typical events observed at the three stations and can be used to explain some average features of negative phase ionospheric storms in middle latitudes. 展开更多
关键词 A MODEL FOR THE VARIATIONS OF THE CRITICAL FREQUENCY OF F2 LAYER DURING THE NEGATIVE PHASES OF ionospheric stormS
原文传递
Ionospheric absorption at Zhongshan Station, Antarctica during magnetic storms in early May, 1998 被引量:4
3
作者 刘瑞源 贺龙松 +1 位作者 胡红桥 刘勇华 《Chinese Journal of Polar Science》 1999年第2期133-140,共8页
In the paper the high latitude ionospheric absorption events, monitored by an imaging riometer at Zhongshan Station, Antarctica, are examined during magnetic storms in early May, 1998. The storm absorption at ~0639 UT... In the paper the high latitude ionospheric absorption events, monitored by an imaging riometer at Zhongshan Station, Antarctica, are examined during magnetic storms in early May, 1998. The storm absorption at ~0639 UT on May 2 was mainly an equatorward progressing absorption event, which were associated with a strong negative bay of the magnetic H component and with a large Pc3 range pulsation. There was a time lag of about 1. 5 hours between the onset of the ionospheric disturbance and the IMF southward turning in the solar wind. The event at 2222 UT on May 2 was a typical midnight absorption spike event. The absorption region took the form of an elongated strip with the length of 100 - 150 km and the width of 30 - 40 km. The absorption during 0830 - 1200 UT on May 6 was a polar cap absorption (PCA) event,caused by intense precipitation of high-energy protons erupted after a large solar flare explosion. 展开更多
关键词 ionospheric absorption magnetic storms riometer Zhongshan Station Antarctica
下载PDF
Recent ionospheric investigations in China(2018–2019) 被引量:5
4
作者 LiBo Liu WeiXing Wan 《Earth and Planetary Physics》 CSCD 2020年第3期179-205,共27页
Since the release of the 2018 National Report of China on ionospheric research(Liu LB and Wan WX,2018)to the Committee on Space Research(COSPAR),scientists from China's Mainland have made many new fruitful investi... Since the release of the 2018 National Report of China on ionospheric research(Liu LB and Wan WX,2018)to the Committee on Space Research(COSPAR),scientists from China's Mainland have made many new fruitful investigations of various ionospheric-related issues.In this update report,we briefly introduce more than 130 recent reports(2018–2019).The current report covers the following topics:ionospheric space weather,ionospheric structures and climatology,ionospheric dynamics and couplings,ionospheric irregularity and scintillation,modeling and data assimilation,and radio wave propagation in the ionosphere and sounding techniques. 展开更多
关键词 IONOSPHERE ionospheric storm ionospheric climatology ionospheric irregularity GNSS space weather
下载PDF
Empirical modeling of ionospheric F2 layer critical frequency over Wakkanai under geomagnetic quiet and disturbed conditions 被引量:4
5
作者 LIU Jing LIU LiBo +2 位作者 ZHAO BiQiang WAN WeiXing CHEN YiDing 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第5期1169-1177,共9页
The hourly values of the ionospheric F2 layer critical frequency, foF2, recorded at Wakkanai ionosonde station (45.4°N, 141.7°E) have been collected to construct a middle-latitude single-station model for ... The hourly values of the ionospheric F2 layer critical frequency, foF2, recorded at Wakkanai ionosonde station (45.4°N, 141.7°E) have been collected to construct a middle-latitude single-station model for forecasting foF2 under geomagnetic quiet and disturbed conditions. The module for the geomagnetic quiet conditions incorporates local time, seasonal, and solar vari- ability of climatological foF2 and its upper and lower quartiles. It is the first attempt to predict the upper and lower quartiles of foF2 to account for the notable day-to-day variability in ionospheric foF2. The validation statistically verifies that the model captures the climatological variations of foF2 with higher accuracy than IRI does. The storm-time module is built to capture the geomagnetic storm induced relative deviations of foF2 from the quiet time references. In the geomagnetically disturbed module, the storm-induced deviations are described by diumal and semidiumal waves, which are modulated by a modified magnetic activity index, the Kf index, reflecting the delayed responses of foF2 to geomagnetic activity forcing. The coeffi- cients of the model in each month are determined by fitting the model formula to the observation in a least-squares way. We provide two options for the geomagnetic disturbed module, including or not including Kalman filter algorithm. The Kalman filter algorithm is introduced to optimize these coefficients in real time. Our results demonstrate that the introduction of the Kalman filter algorithm in the storm time module is promising for improving the accuracy of predication. In addition, comparisons indicate that the IRI model prediction of the F2 layer can be improved to provide better performances over this region. 展开更多
关键词 Empirical modeling Kalman f'dter ionospheric storm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部