In this study, the relationship between the neutral components (N2 and 02) in the E-region of the ionosphere (at 110 km altitude) for the Singapore (01.23 N; 103.55 E) station in the equatorial region and the FI...In this study, the relationship between the neutral components (N2 and 02) in the E-region of the ionosphere (at 110 km altitude) for the Singapore (01.23 N; 103.55 E) station in the equatorial region and the FI0.7 solar flux and z-component of Interplanetary Magnetic Field (IMF-Bz) was investigated. This relationship was determined by means of statistical multiple regression model. As a result, it was observed that the changes in F10.7 solar flux and IMF-Bz were inversely proportional to the changes in N2 and 02. 92% and 83% of changes in N2 and O2 were found to be explained by F10.7 solar flux and IMF-Bz, respectively. When the F10.7 solar flux is changed by 1 s.f.u., it causes a decrease of 2.61×10TM m-3 in N2 and 2.96×1014 m-3 in O2. Change of I nT in IMF-Bz causes a decrease of 9.95× 1015 m-3 in N2 and 1.69× 1015 m-3 in O2.展开更多
文摘In this study, the relationship between the neutral components (N2 and 02) in the E-region of the ionosphere (at 110 km altitude) for the Singapore (01.23 N; 103.55 E) station in the equatorial region and the FI0.7 solar flux and z-component of Interplanetary Magnetic Field (IMF-Bz) was investigated. This relationship was determined by means of statistical multiple regression model. As a result, it was observed that the changes in F10.7 solar flux and IMF-Bz were inversely proportional to the changes in N2 and 02. 92% and 83% of changes in N2 and O2 were found to be explained by F10.7 solar flux and IMF-Bz, respectively. When the F10.7 solar flux is changed by 1 s.f.u., it causes a decrease of 2.61×10TM m-3 in N2 and 2.96×1014 m-3 in O2. Change of I nT in IMF-Bz causes a decrease of 9.95× 1015 m-3 in N2 and 1.69× 1015 m-3 in O2.